T. Upadhyaya; W. F. Braasch, Jr.; G. T. Landi; and N. Yunger Halpern, “Non-Abelian transport distinguishes three usually equivalent notions of entropy production,” PRX Quantum (2024).
L. P. García-Pintos, K. Bharti, J. Bringewatt, H. Dehghani, A. Ehrenberg, N. Yunger Halpern, and A. V. Gorshkov, “Estimation of Hamiltonian parameters from thermal states,” Phys. Rev. Let. 133, 040802 (2024).
X. Song, F. Salvati, C. Gaikwad, N. Yunger Halpern, D. R. M. Arvidsson-Shukur, and K. Murch, “Agnostic phase estimation,” Phys. Rev. Lett. 132, 260801 (2024).
S. Majidy, “Effects of noncommuting charges in quantum information and thermodynamics,” U. of Waterloo (2024).
L. E. Hillberry, L. Piroli, E. Vernier, N. Yunger Halpern, T. Prosen, and L. D. Carr, “Integrability of Goldilocks quantum cellular automata,” arXiv:2404.02994 (2024).
Z. Davoudi, C. Jarzynski, N. Mueller, G. Oruganti, C. Powers, and N. Yunger Halpern, “Quantum thermodynamics of nonequilibrium processes in lattice gauge theories,” arXiv:2404.02965 (2024).
D. R. M. Arvidsson-Shukur, W. F. Braasch Jr., S. De Bièvre, J. Dressel, A. N. Jordan, C. Langrenez, M. Lostaglio, J. S. Lundeen, and N. Yunger Halpern, “Properties and Applications of the Kirkwood-Dirac Distribution,” arXiv:2403.18899 (2024).
S. Majidy, “Noncommuting charges’ effect on the thermalization of local observables,” arXiv:2403.13046 (2024).
A. Munson, N. Bhavya T. Kothakonda, J. Haferkamp, N. Yunger Halpern, J. Eisert, and P. Faist, “Complexity-constrained quantum thermodynamics,” arXiv:2403.04828 (2024).
X. Song, F. Salvati, C. Gaikwad, N. Yunger Halpern, D. R. M. Arvidsson-Shukur, and K. Murch, “Agnostic phase estimation,” arXiv:2403.00054 (2024).
L. P. García-Pintos, K. Bharti, J. Bringewatt, H. Dehghani, A. Ehrenberg, N. Yunger Halpern, and A. V. Gorshkov, “Estimation of Hamiltonian parameters from thermal states,” arXiv:2401.10343 (2024).
D. Arvisson Shukur, A. G. McConnell, and N. Yunger Halpern, “Nonclassical Advantage in Metrology Established via Quantum Simulations of Hypothetical Closed Timelike Curves,” Phys. Rev. Lett. 131, 150202 (2023).
S. Majidy, W. F. Braasch, Jr., A. Lasek; T. Upadhyaya; A. Kalev; and N. Yunger Halpern, “Noncommuting conserved charges in quantum thermodynamics and beyond,” Nat. Rev. Phys. 5, 689–698 (2023).
S. Majidy, U. Agrawal, S. Gopalakrishnan, A. C. Potter, R. Vasseur, and N. Yunger Halpern, “Critical phase and spin sharpening in SU(2)-symmetric monitored quantum circuits,” Phys. Rev. B 108, 054307 (2023).
J. A. Marín Guzmán, P. Erker, S. Gasparinetti, M. Huber, and N. Yunger Halpern, “DiVincenzo-like criteria for autonomous quantum machines,” arXiv:2307.08739 (2023).
S. Majidy, W. F. Braasch, Jr., A. Lasek; T. Upadhyaya; A. Kalev; and N. Yunger Halpern, “Noncommuting conserved charges in quantum thermodynamics and beyond,” arXiv:2306.00054 (2023).
M. A. Aamir, P. J. Suria, J. A. Marín Guzmán, C. Castillo-Moreno, J. M. Epstein, N. Yunger Halpern, and S. Gasparinetti, “Thermally driven quantum refrigerator autonomously resets superconducting qubit,” arXiv:2305.16710 (2023).
T. Upadhyaya; W. F. Braasch, Jr.; G. T. Landi; and N. Yunger Halpern, “What happens to entropy production when conserved quantities fail to commute with each other,” arXiv:2305.15480 (2023).
S. Majidy, U. Agrawal, S. Gopalakrishnan, A. C. Potter, R. Vasseur, and N. Yunger Halpern, “Critical phase and spin sharpening in SU(2)-symmetric monitored quantum circuits,” arXiv:2305.13356 (2023).
F. Kranzl, A. Lasek, M. K. Joshi, A. Kalev, R. Blatt, C. F. Roos, and N. Yunger Halpern, “Experimental Observation of Thermalization with Noncommuting Charges,” Phys. Rev. X Quantum 4, 020318 (2023).
C. Murthy, A. Babakhani, F. Iniguez, M. Srednicki, N. Yunger Halpern, “Non-Abelian eigenstate thermalization hypothesis,” Phys. Rev. Lett. 130, 140402 (2023).
S. Majidy, A. Lasek, D. A. Huse, N. Yunger Halpern, “Non-Abelian symmetry can increase entanglement entropy,” Phys. Rev. B 107, 045102 (2023).
N. Yunger Halpern, N. B. T. Kothakonda, J. Haferkamp, A. Munson, J. Eisert, and P. Faist, “Resource theory for quantum uncomplexity,” Phys. Rev. A 106, 062417 (2022).
S. Majidy, A. Lasek, D. A. Huse, N. Yunger Halpern, “Non-Abelian symmetry can increase entanglement entropy,” arXiv:2209.14303 (2022).
D. R. M. Arvidsson-Shukur, A. G. McConnell, N. Yunger Halpern, “Quantum simulations of time travel can power nonclassical metrology,” arXiv:2207.07666 (2022).
Z. A. Benson, A. Peshkov, N. Yunger Halpern, D.C. Richardson, and W. Losert, “Experimentally measuring rolling and sliding in three-dimensional dense granular packings,” Phys. Rev. Lett. 129, 048001 (2022).
C. Murthy, A. Babakhani, F. Iniguez, M. Srednicki, N. Yunger Halpern, “Non-Abelian eigenstate thermalization hypothesis,” arXiv:2206.05310 (2022).
N. B. Lupu-Gladstein, B. Y. Yilmaz, D. R. M. Arvidsson-Shukur, A. Brodutch, A. O. T. Pang, A. M. Steinberg, N. Yunger Halpern, “Negative quasiprobabilities enhance phase estimation in quantum-optics experiment,” Phys. Rev. Lett. 128, 220504 (2022).
J. Haferkamp, P. Faist, N. B. T. Kothakonda, J. Eisert, and N. Yunger Halpern, “Linear growth of quantum circuit complexity,” Nature Physics (2022).
F. Kranzl, A. Lasek, M. K. Joshi, A. Kalev, R. Blatt, C. F. Roos, N. Yunger Halpern, “Experimental observation of thermalisation with noncommuting charges,” arXiv:2202.04652 (2022).
N. Yunger Halpern, S. Majidy, “How to build Hamiltonians that transport noncommuting charges in quantum thermodynamics,” npj Quantum Information (2022).
N. Yunger Halpern, N. B. T. Kothakonda, J. Haferkamp, A. Munson, J. Eisert, and P. Faist, “Resource theory of quantum uncomplexity,” arXiv:2110.11371 (2021).
L.E. Hillberry, M.T. Jones, D.L. Vargas, P. Rall, N. Yunger Halpern, N. Bao, S. Notarnicola, S. Montangero, and L.D. Carr, “Entangled quantum cellular automata, physical complexity, and Goldilocks rules,” Quantum Science and Technology (2021).
D. Arvidsson-Shukur, J. Chevalier Drori, and N. Yunger Halpern, “Conditions tighter than noncommutation needed for nonclassicality,” J. Phys. A 54, 284001 (2021).
W. Zhong, J. M. Gold, S. Marzen, J. L. England, and N. Yunger Halpern, “Machine learning outperforms thermodynamics in measuring how well a many‐body system learns a drive,” Scientific Reports 11, 9333 (2021).
J.T. Monroe, N. Yunger Halpern, T. Lee, and K. W. Murch, “Weak measurement of superconducting qubit reconciles incompatible operators,” Phys. Rev. Lett. 126, 100403 (2021).
(See also: Publication archive)