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Quantum complexity measures the difficulty of realizing a quantum process, such as preparing a state
or implementing a unitary. We present an approach to quantifying the thermodynamic resources required
to implement a process if the process’s complexity is restricted. We focus on the prototypical task of
information erasure, or Landauer erasure, wherein an n-qubit memory is reset to the all-zero state. We
show that the minimum thermodynamic work required to reset an arbitrary state in our model, via a
complexity-constrained process, is quantified by the state’s complexity entropy. The complexity entropy
therefore quantifies a trade-off between the work cost and complexity cost of resetting a state. If the qubits
have a nontrivial (but product) Hamiltonian, the optimal work cost is determined by the complexity relative
entropy. The complexity entropy quantifies the amount of randomness a system appears to have to a
computationally limited observer. Similarly, the complexity relative entropy quantifies such an observer’s
ability to distinguish two states. We prove elementary properties of the complexity (relative) entropy. In
a random circuit—a simple model for quantum chaotic dynamics—the complexity entropy transitions
from zero to its maximal value around the time corresponding to the observer’s computational-power
limit. Also, we identify information-theoretic applications of the complexity entropy. The complexity
entropy quantifies the resources required for data compression if the compression algorithm must use a
restricted number of gates. We further introduce a complexity conditional entropy, which arises naturally
in a complexity-constrained variant of information-theoretic decoupling. Assuming that this entropy obeys
a conjectured chain rule, we show that the entropy bounds the number of qubits that one can decouple from
a reference system, as judged by a computationally bounded referee. Overall, our framework extends the
resource-theoretic approach to thermodynamics to integrate a notion of time, as quantified by complexity.
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I. INTRODUCTION

Quantum complexity is drawing increasing interest
across physics, from many-body physics to quantum grav-
ity [1–4]. For the purposes of our work, the quantum
complexity of a unitary operation (respectively, a quantum
state) is the minimum number of operations required to
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implement the unitary (respectively, to prepare the state).
Each operation is chosen from a given set of elemen-
tary operations (e.g., a universal set of two-qubit gates).
In condensed-matter physics, preparing a topologically
ordered state requires a circuit of sufficient complexity to
spread information throughout a system [1,2,5–11]. Near-
term quantum devices aim to prepare states of sufficient
complexities to offer quantum advantages attributable, for
example, to the hardness of sampling classically from
such states [12–15]. Quantum complexity recently gained
significance in the context of the anti-de Sitter space
and conformal field theory (AdS-CFT) correspondence
in high-energy physics: In a prominent conjecture, the
complexity of the field-theoretic state dual to a wormhole
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connecting two black holes is proportional to the worm-
hole’s length [3,4,16–30].

The relevance of quantum complexity to AdS-CFT
motivates connections to thermodynamics. Brown and
Susskind posited that the CFT state’s complexity should
tend to increase, formulating a “second law of complexity”
[3]. Bai et al. extended the second law of complexity by
proving fluctuation relations mirroring Jarzynski’s equal-
ity in statistical mechanics [31]. A resource theory of
uncomplexity—a state’s closeness to a simple tensor prod-
uct—was furthermore established in Ref. [30]. Quantum
complexity also appears connected to ergodicity and quan-
tum chaos: complexity is believed to grow linearly for
long times under typical quantum chaotic dynamics; com-
plexity would thereby provide a universal measure for
how long a chaotic system has evolved [4,17–20,32]. In
contrast, standard correlation functions and entanglement
entropies typically reach their equilibrium values after
short times [4].

Our main goal is to identify which state transformations
in quantum thermodynamics can be effected by processes,
and probed with measurement effects, utilizing limited
computational resources, hence of limited complexity. In
particular, we seek to connect quantum complexity and
entropy as follows. In conventional thermodynamics, the
minimum amount of work needed to transform one equi-
librium state into another, via exchanges of heat at a fixed
temperature, is determined by the energy and entropy dif-
ferences between the initial and final states. The complex-
ity of a many-body system’s evolution is upper-bounded
by the evolution’s duration. An observer with little com-
putational power typically cannot distinguish a highly
complex pure state from a highly entropic mixed state. A
phenomenological description of possible state transfor-
mations under short-time evolutions, from the viewpoint
of such an observer, should not distinguish highly entropic
initial states from highly complex pure states. The states
become distinguishable if observed over sufficiently long
timescales or through sufficiently complex observables.
This fact invites us to define thermodynamic potentials for
determining which state transformations can be effected
under complexity limitations. The roles of these potentials
mirror the role of entropy in standard thermodynamics.
Using the potentials, we address our general question:
how does one formulate thermodynamics at a given com-
plexity scale—for complexity-constrained processes and
observers?

Our analysis relies on recent information-theoretic
frameworks for quantum thermodynamics. The relevance
of an observer’s information, or knowledge, in thermo-
dynamics was significantly clarified by the pioneering
works of Szilárd [33], Landauer [34], and Bennett [35].
Landauer argued that erasing a bit of information dis-
sipates an amount of heat � kBT log(2) [34]. The kB
denotes Boltzmann’s constant, T denotes an environment’s

FIG. 1. A simple model combining quantum information ther-
modynamics and complexity: An n-qubit memory register is
governed by a completely degenerate Hamiltonian. Processes
consist of the primitive operations (i)–(iii). Work and complex-
ity costs are defined as the sums of the corresponding costs over
the operations. (a) A qubit can be reset from any state ρ to a
standard state |0〉. The resetting costs one unit of work (W), by
Landauer’s principle [34]. This primitive has no complexity cost
(C). (b) One unit of work can be extracted from a qubit in the state
|0〉. The extraction leaves the qubit maximally mixed [33]. (c)
Operations E are chosen from a set T of elementary computa-
tions. Each E costs one unit of complexity but no work. A natural
choice for T is the set of two-qubit unitary operations, poten-
tially subject to connectivity constraints. Choices of T natural
to thermodynamic applications preserve thermal states.

temperature, and the logarithm is base-e. This observation
led to Bennett’s resolution of Maxwell’s demon para-
dox [35,36] and helped extend quantum thermodynam-
ics to far-from-equilibrium systems [37–40]. A common
model for quantum thermodynamics is the resource the-
ory of thermal operations [37,38,41–44]: one assumes that
energy-conserving interactions with a fixed-temperature
heat bath are the only operations performable without
external resources, such as thermodynamic work. Using
this model, one can determine whether a state ρ can
transform into a state σ , for large classes of states. The
answer can be cast in terms of a family of entropy mea-
sures termed the Rényi-α relative entropies [44]. A closely
related model captures how many natural, or spontaneous,
dynamics have a particular fixed point. Using this model,
one can quantify, e.g., the thermodynamic work required
to implement a general quantum process [40,45,46]. A key
observation is that a process’s work cost is tied funda-
mentally to its logical irreversibility: information erasure
is costly, but energy-conserving unitary operations can,
in principle, be implemented at zero work cost [34–36].
We introduce a simple model that captures the main fea-
tures of the above models and that forms the basis for our
analysis. Our model centers on an n-qubit memory reg-
ister governed by a completely degenerate Hamiltonian.
The following primitive operations are performable (Fig.
1): (i) the reset of one qubit from any state to a standard
state |0〉, costing one unit of work; (ii) the preparation of
one qubit in the maximally mixed state from |0〉, extracting
one unit of work; and (iii) the implementation of one two-
qubit unitary gate, costing one unit of complexity. (Our
model neglects any complexity cost of single-qubit erasure
[47], to separate two types of costs: the thermodynamic
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work cost associated with reducing the entropy of a single
qubit, and the computational cost of exchanging informa-
tion between the qubits. The former operations involve
thermodynamic work and act on individual qubits. The lat-
ter operations involve two-qubit interactions that tend to
spread quantum information throughout the system. Our
model generalizes to elementary operations that cost both
work and complexity.)

We first revisit the standard setting of information era-
sure, or Landauer erasure. Erasure has clarified infor-
mation’s role in thermodynamics; we now use erasure
to clarify complexity’s role in quantum thermodynamics.
We consider an n-qubit system with a product Hamilto-
nian H and a zero-energy ground state. We prove that
the minimum work required to reset an arbitrary state
ρ to the ground state, using at most a fixed number of
thermodynamic processes in our model, is given by the
complexity relative entropy of ρ relative to a thermal state
[30]. The complexity relative entropy quantifies two states’
distinguishability, as judged by an observer with limited
computational power. If H = 0, this quantity reduces to
the complexity entropy [30] and quantifies how random a
state appears to such an observer. A variant of the complex-
ity (relative) entropy appeared in our Ref. [30] to quantify
the number of pure qubits extractable from a state, in the
resource theory of uncomplexity. The present work further
applies the complexity relative entropy to thermodynam-
ics: we extend the pure-qubit extraction protocol of Ref.
[30] to general protocols for thermodynamic information
erasure under complexity limitations.

Our result quantifies a trade-off between the work and
complexity costs of erasing an n-qubit state ρ (Fig. 2). Sup-
pose that H = 0, and consider a highly complex pure state
|ψ〉. In standard models for information thermodynam-
ics, one can implement unitary operations on an energy-
degenerate memory register at zero work cost, since such
operations are logically reversible [43,48,49]. Therefore,
|ψ〉 can, in principle, be transformed into the all-zero state
|0n〉 at no work cost. Yet, this transformation requires many
gates, incurring a high complexity cost. An alternative
procedure would reset each memory qubit with a thermo-
dynamic reset operation. This procedure costs n kBT log(2)
units of work but no complexity. The complexity entropy
quantifies the trade-off between the work and complexity
costs of erasing |ψ〉.

Bennett et al. analyzed a trade-off between complex-
ity and work in the context of classical bit erasure [50].
Kolmogorov complexity, rather than quantum complex-
ity, is relevant to their problem. The connection between
Kolmogorov complexity and thermodynamics was further
cemented in Zurek’s work [51] and in Refs. [52–54]. Kol-
mogorov complexity and quantum complexity quantify the
size of a state’s “smallest description” in different ways.
Kolmogorov complexity quantifies the size of the small-
est program that generates the state (regardless of the

��� ���

FIG. 2. An example trade-off between the work cost and com-
plexity cost of resetting an n-qubit memory register initiated in
a highly complex pure state |ψ〉. (a) A unitary operation resets
the memory to the all-zero state. In principle, the unitary costs
no thermodynamic work. Many gates are necessary to imple-
ment the unitary, incurring a high complexity cost. (b) To reset
the memory without gates, one can erase every qubit [via prim-
itive (i) in Fig. 1]. This operation costs n units of work total.
The complexity entropy quantifies the work-complexity trade-
off of erasing an arbitrary state ρ. The complexity entropy was
introduced in Ref. [30]; this work elucidates its properties and
applications.

program’s runtime). In contrast, quantum complexity mea-
sures the shortest runtime of a program that generates the
state (regardless of whether the program has a compact
representation).

The remainder of this work is dedicated to the analy-
sis of more-general thermodynamic processes, including
erasure in systems with nontrivial Hamiltonians, and to a
deeper study of the complexity entropy’s properties, uses,
and extensions. We study the work costs of general state
transformations in quantum thermodynamics where com-
plexity limitations restrict which processes and measure-
ments one can implement. Furthermore, we evidence the
complexity entropy’s broad relevance to quantum informa-
tion theory. First, we present properties of the complexity
entropy and bound it using well-known complexity mea-
sures and an entanglement measure. Then, we demonstrate
the complexity entropy’s relevance in random circuits,
a simple model of quantum chaotic dynamics. Last, we
apply our complexity-entropy measures to information-
theoretic tasks with complexity constraints.

What is the work cost of a general state transformation
ρ → ρ ′, as in the model of Fig. 1? We consider the mini-
mum work cost of any process, of complexity at most r �
0, that maps ρ to a state indistinguishable from ρ ′. Here,
distinguishability is judged by an observer who possesses
some bounded computational power R � 0. This work cost
extends the complexity relative entropy’s use to general
state transformations. Quantifying the work cost addresses
our main goal of establishing which state transformations
are possible in quantum thermodynamics for complexity-
constrained agents. Considering regimes in which R is
either extremely high or extremely low, we identify cases
in which bounding the work cost is sometimes possible.
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Our complexity-entropy measures obey certain proper-
ties expected of entropies. For instance, the complexity
entropy achieves its maximum value on a maximally
mixed state. Also, the complexity relative entropy
decreases monotonically under partial traces. Our mea-
sures lack other common properties, such as invariance
under unitaries and monotonicity under completely posi-
tive, trace-preserving maps (a data-processing inequality):
by construction, the complexity (relative) entropy is sen-
sitive to a state’s complexity, which can change under
arbitrary quantum operations. Moreover, the complexity
entropy obeys bounds involving known complexity mea-
sures: one bound involves the strong complexity of Ref.
[17]; and the other, the approximate circuit complexity
(the minimum complexity of any unitary that approxi-
mately prepares a target state). For a one-dimensional (1D)
chain of qubits, the complexity entropy obeys also a bound
involving an entanglement measure defined in terms of the
quantum mutual information.

We argue that the complexity entropy can quantify
chaotic behavior in a quantum many-body system. Con-
sider a suitably chaotic many-body system initialized in a
pure product state. The state’s complexity entropy should
remain low until the timescale matching an observer’s
computational power. Beyond this timescale, the complex-
ity entropy should be close to maximal. We employ and
extend the results of Refs. [17,55] to prove a correspond-
ing statement about the output of a random quantum circuit
applied to |0n〉, an n-qubit system’s all-zero state. Sup-
pose that an observer can measure only observables of
complexities � r. The complexity entropy, we show, tran-
sitions from zero to n − O(1) when the number of gates
reaches ≈ r (Fig. 3). For a random circuit of � r gates,
the observer can apply the inverse circuit to recover the
all-zero state and so to ascertain that the random circuit’s
output has a low entropy. For a random circuit of � r gates,
the observer cannot distinguish the circuit’s output from
a maximally mixed state, using observables of complexi-
ties � r [17,32]. Accordingly, the output has a complexity
entropy of at least n − O(1). Reference [17] quantifies
a random circuit’s complexity by applying a powerful
tool in random-circuit analysis: a unitary k-design [55,57].
The lower bound’s linear scaling comes from recently
improved bounds for the design order achieved by random
circuits [32] over existing bounds [55,56].

We use our complexity-entropy measures to bound
the optimal efficiencies of information-theoretic tasks
performed under complexity limitations. Thermodynamic
erasure is related to data compression, the storage of infor-
mation in the smallest possible register [58–60]: to erase a
memory register, one can first perform data compression
to reduce the number of qubits that need resetting. The
complexity entropy quantifies the resources required to
compress a quantum state into the fewest qubits possible,
via any limited-complexity procedure.

FIG. 3. The complexity entropy of a state outputted by a ran-
dom circuit, relative to an observer who can implement only
measurement effects of complexities � r. We determine the com-
plexity entropy’s evolution using techniques from Refs. [17,55,
56]. After a time t � r, the state has a low enough complexity that
the observer can verify the state’s purity via measurement. After
t � r, the state is complex enough to be nearly indistinguish-
able from a highly entropic state, according to any measurement
whose complexity is � r.

After addressing data compression, we study decou-
pling, or ensuring that an agent’s multiqubit system
becomes maximally mixed and uncorrelated with a ref-
eree’s system, R [61–64]. Assuming a conjecture about
a chain rule for the complexity entropy, we lower-bound
the number of qubits that an agent must discard to obtain
a state indistinguishable, by a complexity-restricted ref-
eree, from a maximally mixed state uncorrelated with R.
The lower-bound is given by a conditional variant of the
complexity entropy. One can interpret the variant as a
complexity-aware conditional min-entropy.

Our paper is organized as follows. In Sec. II, we intro-
duce our framework, background information, and the
complexity entropy. In Sec. III, we bound the work cost of
information erasure subject to complexity restrictions. In
Sec. IV, we generalize our analysis to arbitrary state trans-
formations. In Sec. V, we present the complexity entropy’s
information-theoretic properties and applications. We con-
clude in Sec. VI.

II. SETTING

In Sec. II A, we introduce our setup and allowed opera-
tions. In Sec. II B, we review one-shot information theory,
which quantifies the efficiencies of thermodynamic tasks
performed on finite-size systems, with arbitrary success
probabilities. In Sec. II C, we introduce the complexity
entropy and complexity relative entropy.

A. Thermodynamic framework

We consider a system of n noninteracting qubits. Qubit
i evolves under a Hamiltonian Hi, and the entire system
under the Hamiltonian H = H1 + H2 + · · · + Hn. For sim-
plicity, we suppose that Hi |0〉i = 0 and Hi |1〉i = E(1)i |1〉i,
with E(1)i � 0. The all-zero bit string |0n〉 labels the zero-
energy ground state. For a fixed inverse temperature
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β = 1/kBT, qubit i has the thermal state

γi = �i/Zi, (1)

wherein �i = e−βHi and Zi = tr(�i) = 1 + e−βE(1)i . The
thermal qubit’s free energy is given by

Fi = −kBT log(Zi). (2)

The thermal operations model possible transformations
in quantum thermodynamics, for a system in controlled
contact with a heat bath [38,42,43]. Let S denote a system
with a Hamiltonian HS. A thermal operation 	S is defined
as any operation of the form

ρ �→ 	S(ρ) = trB

(
VSB [ρ ⊗ γB] V†

SB

)
. (3)

B denotes any auxiliary system with a Hamiltonian HB.
VSB denotes any unitary that strictly conserves energy:
[VSB, HS + HB] = 0. For an arbitrary system X gov-
erned by a Hamiltonian HX , the thermal state γX =
e−βHX / tr

(
e−βHX

)
is defined similarly to Eq. (1).

Another general class of operations consists of the
Gibbs-preserving maps [45]. Let S denote a system with
a Hamiltonian HS. A Gibbs-preserving map F is any
completely positive, trace-preserving map that satisfies
F (γS) = γS′ . The Gibbs-preserving maps form a larger
class than the thermal operations [65]. It remains unclear
what resource costs are necessary for implementing a gen-
eral Gibbs-preserving map, using other standard thermo-
dynamic operations [66]. When HS = 0, γS is proportional
to the identity operator 1S, so every Gibbs-preserving map
F is a unital map [F (1S) = 1S] and vice versa.

Inspired by the resource theory of thermodynamics,
we use a model in which all processes consist of prim-
itive operations. A process is specified as a sequence
P := (E1, . . . , Em) of primitive operations. The sequence
implements the operation EP := Em · · ·E1. Each primitive
operation Ei has a complexity cost C(Ei) and a work cost
W(Ei). Accordingly, each process P has a complexity cost
C(P) and a work cost W(P), which are sums of the
primitive operations’ costs

C(P) :=
m∑

i=1

C(Ei), and W(P) :=
m∑

i=1

W(Ei). (4)

One might refer to C(P) instead as the circuit size of P .
Suppose that P implements a unitary operation U . C(P)

might differ from the complexity C(U ) of U : there might
exist a process that also implements U but consists of
fewer primitive operations.

The primitive operations on an n-qubit system, given
a background inverse temperature β = 1/kBT, are the
following (Fig. 1):

(i) The RESET operation: Qubit i can be brought from an
arbitrary state to the ground state. This operation has
the work cost WRESET, i = −Fi = kBT log(Zi) and
no complexity cost: CRESET, i = 0.

(ii) The EXTRACT operation: Work |Fi| can be extracted
as qubit i is brought from |0〉i to the ther-
mal state γi. This operation has the work cost
WEXTRACT, i = Fi = −WRESET,i and no complexity
cost: CEXTRACT, i = 0.

(iii) Every operation E chosen from a fixed set T of ele-
mentary computations costs one unit of complexity,
C(E ) = 1, and no work: W(E ) = 0. If Hi = 0 for all
i, then natural choices of T include arbitrary two-
qubit unitary gates with arbitrary connectivities. In
this case, T � ⋃

(i,j ) SU(4)i,j , wherein each (i, j )
denotes a pair of qubits. If Hi 	= 0, natural choices
of T include the two-qubit thermal operations and
the two-qubit Gibbs-preserving maps, with arbitrary
connectivities.

The work expended on the RESET, and the work
extracted via EXTRACT, naturally generalize Landauer’s
bound to noninteracting qubits. The RESET and EXTRACT
operations’ ideal work costs are WRESET, i = −WEXTRACT, i =
−Fi in standard thermodynamic models, including the
resource theory of thermal operations [43,44,67–69]. The
RESET operation can be applied to any input state, not
only a thermal state. Its deterministic work cost, −Fi, can
be viewed as equal to the worst-case work cost of reset-
ting any particular input state. If a qubit has a completely
degenerate Hamiltonian, Hi = 0, these work costs reduce
to Landauer’s bound: −Fi = kBT log(2).

The set T of elementary computations enables us to
define a protocol’s complexity cost. To separate elemen-
tary thermodynamic operations from elementary comput-
ing operations, T should contain only operations to which
one can reasonably assign no work costs. Crucially, we
choose the elementary computations to act nontrivially
on just two qubits. This property ensures that several
elementary computations are needed to propagate informa-
tion throughout the system and many more are needed to
generate complex quantum states.

For energy-degenerate qubits (Hi = 0 for all i), a mean-
ingful choice of T is a universal set of two-qubit unitary
gates: the primitive operation (iii) then enables quantum
computation with unitary circuits. This choice is undesir-
able if the qubits have nontrivial Hamiltonians, however:
some two-qubit unitaries require work and so should be
excluded from T (for example, a swap of two different-
energy levels). One could choose for T to consist of
two-qubit unitaries that commute with the total Hamil-
tonian. Unfortunately, this choice typically leads to an
unreasonably restricted set. The energy-conserving uni-
taries on two qubits with distinct Hamiltonians is limited
to unitaries that are diagonal with respect to the product
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energy eigenbasis. This choice could render impossible
some natural operations that might otherwise be imple-
mentable with ancillary qubits and nondiagonal two-qubit
unitaries. One such operation is a partial thermalization of
a qubit: ρ → ρ/2 + γi/2.

When the qubits have nontrivial Hamiltonians, we
include in T some nonunitary two-qubit operations to
remedy the above problem. We still ensure that the T
elements cost no work in standard thermodynamic frame-
works. Yet T can include operations that are not imple-
mentable in practice. For instance, they can require unrea-
sonable control. In such a case, the conclusions about the
operations’ work and complexity costs imply lower bounds
applicable to every setting in which the physically imple-
mentable elementary computations form a smaller set T0.
(These bounds might not be tight.) In fact, choosing a
larger T ensures that any such lower bounds apply to
a broader range of possibilities for T0. In this spirit, we
identify two T s that are large and likely include all nat-
ural possibilities for T0: two-qubit thermal operations and
two-qubit Gibbs-preserving maps.

For degenerate Hamiltonians, the choice of T as the
set of two-qubit unitaries does not suffer the same prob-
lems as those that apply to sets of unitary operations
for nondegenerate Hamiltonians. Alternative T choices
include the sets of all the two-qubit noisy operations and
of all the two-qubit unital maps. These operations are the
two-qubit thermal operations and Gibbs-preserving maps,
respectively, if the qubits have degenerate Hamiltonians.
However, the two-qubit noisy operations and unital maps
likely include operations that demand unreasonable con-
trol requirements, making the resource-cost lower bounds
loose.

B. One-shot entropy measures in quantum
thermodynamics

A fundamental connection between thermodynamics
and statistical mechanics is the identification, under suit-
able conditions, of Clausius’ thermodynamic entropy with
the von Neumann entropy H (ρ) of a quantum state ρ,

H (ρ) := −tr(ρ log ρ). (5)

In the information-theoretic approach to thermodynamics,
beyond the traditional regime concerning many copies of a
system, many thermodynamic tasks have work costs inac-
curately represented by the von Neumann entropy and the
standard free energy [43,59,60,70–77]. Instead, these work
costs are quantified with one-shot entropy measures, such
as the relative entropies [78–80] and Rényi-α entropies
[44], including the min- and max-entropies.

We focus on the hypothesis-testing relative entropy,
which interpolates between the min- and max-relative
entropies [81–87]. The hypothesis-testing relative entropy

is defined for a quantum state ρ, a positive-semidefinite
operator �, and an intolerance parameter η ∈ (0, 1]:

Dη
H(ρ ‖�) := − log

⎛
⎝ min

0�Q�1
tr(Qρ)�η

{
tr(Q�)
η

}⎞
⎠. (6)

The hypothesis-testing entropy of a quantum state ρ, for
η ∈ (0, 1], is defined as

H η
H(ρ) := −Dη

H(ρ ‖1). (7)

The entropy measures here have units of nats, rather than
bits, because our definitions have base-e, rather than base-
2, logarithms. One can convert between bits and nats via
(no. of bits) = (no. of nats)/ log(2). Our convention intro-
duces factors of log(2) in our results for qubit systems.
However, the convention yields familiar forms for thermo-
dynamic relations between entropy and quantities such as
the free energy.

The hypothesis-testing entropy quantifies how well one
can distinguish between quantum states ρ and σ via a
hypothesis test. Suppose that we receive either ρ or σ . We
must guess which state we obtained, based on the outcome
of one measurement. We may choose the measurement,
specified by a two-outcome positive-operator-valued mea-
sure (POVM) {Q,1− Q}. The outcome Q implies that we
should guess “ρ”; and 1− Q, that we should guess “σ .”
Suppose that, when ρ is provided, the measurement must
identify ρ correctly with a probability � η: tr(Qρ) � η.
When σ is provided, the optimal probability tr(Qσ) of
failing to identify σ is ηe−DηH(ρ ‖ σ). The interpretation of
Eq. (6) as a relative-entropy measure arises from cer-
tain properties. For example, Eq. (6) is non-negative and
obeys a data-processing inequality [82]; Eq. (6) approx-
imates the min- and max-relative entropies when η ≈ 0
and η ≈ 1 [82], respectively; and Eq. (6) quantifies the
resource costs of communication and thermodynamic tasks
[88]. Appendix C contains a more detailed discussion of
the hypothesis-testing relative entropy and its properties.

The hypothesis-testing entropy and relative entropy
have operational significances in quantum thermodynam-
ics [74,89,90]. These quantities unify quantum thermo-
dynamic results based on the min- and max- (relative)
entropies [40,43,46,59,91]: Consider resetting a state ρ on
a memory register S to a fixed state |0〉S. Suppose that ρ
evolves under a completely degenerate Hamiltonian HS =
0 and that the resetting must fail with a probability at most
ε � 0. Absent restrictions on the resetting’s complexity,
the resetting has a work cost [43,82]

Wε
(
ρS → |0〉S

) ≈ H 1−ε
H (ρ)× kBT. (8)

The approximation conceals technical details about how
the failure probability is measured. If ρS = 12/2 is
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the single-qubit maximally mixed state, then H 1−ε
H (ρ) =

log(2), and we obtain the well-known formula for Lan-
dauer erasure [34]

Wε
(
12/2 → |0〉S

) ≈ kBT log(2). (9)

C. Complexity (relative) entropy

The complexity entropy was introduced in the context of
the resource theory of uncomplexity [30]. There, a state’s
complexity entropy quantifies the qubits in the state |0〉
extractable via a limited number of unitary gates. In this
work, we apply the complexity entropy to quantum infor-
mation thermodynamics and detail the entropy’s proper-
ties. We present a version of the complexity entropy that is
tailored to n-qubit quantum circuits wherein each gate is in
the set T of elementary computations. We introduce the
complexity entropy’s general form in Appendix D, where
we prove general bounds and monotonicity results.

A key motivation for defining the complexity entropy is
the following. Consider a hypothesis test between states ρ
and σ . The hypothesis-testing relative entropy quantifies
the optimal probability of wrongly rejecting σ with any
strategy that correctly accepts ρ with a probability � η.
However, an optimal measurement {Q,1− Q} might be
too complex to be executed in a reasonable time. Suppose,
for instance, that ρ = |ψ〉〈ψ | is a highly complex, pure n-
qubit state and that σ = 1⊗n

2 /2n is maximally mixed. A
measurement that distinguishes ρ from σ may require a
complex circuit implementable only in an exponentially
long time [92,93]. It is natural to restrict Q to be imple-
mentable in a reasonable time, with a circuit composed of
� r gates. The complexity relative entropy is defined simi-
larly to the hypothesis-testing relative entropy. The former,
however, has a complexity restriction in the optimization
over measurement operators.

To define the complexity entropy, we must specify
the set of POVM effects that a computationally limited
observer can render. Define Mr as the set of POVM effects
that one can implement by performing � r gates and then
applying certain single-qubit projectors. All tensor prod-
ucts of those projectors constitute the set of complexity-
zero POVM effects

M0 :=
{

n⊗
i=1

Qi : Qi ∈ {|0〉〈0|,12}
}

. (10)

For each i, an effect in M0 projects qubit i onto |0〉 or
does nothing. Fix any set G of elementary quantum opera-
tions (completely positive, trace-nonincreasing maps). (We
define complexity-restricted POVM elements in terms of
G , as an information-theoretic quantity independent of the
thermodynamic framework in Sec. II A. Hence G is inde-
pendent of the operations introduced there. If applying
the POVM elements in that framework, however, one can

choose for G to consist of operations introduced in Sec.
II A.) For r > 0, we define

Mr :=
{
E †

1 · · ·E †
r (P) : P ∈ M0 , Ei ∈ G

}
. (11)

One natural choice for G might be the set of two-qubit
unitary gates. Another choice, in the context of complexity
and thermodynamics, is G = T , wherein T denotes the
set of elementary computations defined in Sec. II A.

Even if a Q belongs to Mr, the complementary effect
1− Q might not. Indeed, the definition of Mr applies in
settings where only one POVM effect is relevant in a hypo-
thetical measurement. For instance, suppose we wish to
certify that some process outputs a state close to some
pure state |ψ〉. One may consider a hypothetical measure-
ment of the output state with a POVM containing the effect
|ψ〉〈ψ |, and ascertain that its outcome probability is close
to unity. In such a scenario, the POVM effect need not be
implemented in practice, and other effects that complete
the POVM may be ignored.

Having introduced complexity-restricted POVM effects,
we can define complexity-restricted entropic quantities.
Let ρ denote any quantum state; and �, any positive-
semidefinite operator. The complexity relative entropy of
ρ relative to �, at a complexity scale r � 0 with respect to
Mr, and for η ∈ (0, 1], is

Dr, η
H (ρ ‖�) := − log

⎛
⎝ inf

Q∈Mr

tr(Qρ)�η

{
tr(Q�)
tr(Qρ)

}⎞
⎠. (12)

This definition extends the hypothesis-testing relative
entropy (6) by restricting the optimization to POVM effects
implementable with � r gates. (See Appendix D 1 for a
more general definition and for details.) The definition
(12) mirrors a construction, based on the trace norm, in
Ref. [17].

The complexity relative entropy enjoys an operational
interpretation similar to that of the hypothesis-testing rela-
tive entropy (6). Consider a hypothesis test between states
ρ and σ . We identify ρ as the null hypothesis and σ as
the alternative hypothesis. Suppose that one can measure
only a POVM {Q,1− Q} for which Q ∈ Mr. It is use-
ful to allow, apart from a measurement, one toss of a
biased classical coin. (We explain why below.) One can
freely choose the coin’s probability q ∈ (0, 1] of land-
ing heads up. Consider guessing “ρ” if the coin shows
“heads” and the POVM outcome is Q, guessing “σ”
otherwise. This strategy is equivalent to measuring the
POVM {qQ,1− qQ}. A type-I error—incorrectly reject-
ing the null hypothesis—occurs with a probability 1 −
tr(qQρ). A type-II error—incorrectly rejecting the alter-
native hypothesis—occurs with a probability tr(qQσ). The
following proposition shows how the complexity relative
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entropy characterizes hypothesis testing with complexity
limitations.

Proposition 1 (Hypothesis testing with complexity limi-
tations). Let ρ and σ denote quantum states. Let η ∈ (0, 1]
and δ ∈ (0, 1]. There exists a Q ∈ Mr and q ∈ (0, 1] such
that tr[(qQ)ρ] = η and tr[(qQ)σ ] � δ if and only if

Dr, η
H (ρ ‖ σ) � − log(δ/η). (13)

The proposition guarantees that, if Eq. (13) holds, then,
for any parameters η, δ ∈ (0, 1], some hypothesis test of the
sort just described has two properties: a type-I error occurs
with a probability � 1 − η, and a type-II error occurs with
a probability � δ. One can satisfy Eq. (13) only if δ � η,
since the complexity relative entropy is non-negative. The
coin toss’s inclusion in the hypothesis test enables a precise
relationship between the complexity relative entropy and
hypothesis testing, for η values far from 1. If η ≈ 1, then
q ≈ 1, and the agent need not toss the coin. We prove the
proposition in Appendix D 3.

Having introduced the complexity relative entropy, we
now define the complexity entropy. Let ρ denote any quan-
tum state. The complexity entropy of ρ, at a complexity
scale r � 0 with respect to Mr, and for η ∈ (0, 1], is

H r, η
H (ρ) := −Dr, η

H (ρ ‖1). (14)

This definition mirrors Eq. (7). We follow a standard pro-
cedure for defining an entropy using a relative entropy
[94]. We show that the complexity entropy is always
non-negative [H r, η

H (ρ) � 0]; see Appendix D 2 for a proof.
The normalization factor tr(Qρ) in Eq. (12) guarantees

elementary properties of the complexity entropy, such as
its having the range [0, n log(2)] for all η. In Appendix
D, we define an alternative version of the complexity
(relative) entropy without the normalization factor. This
alternative is technically more convenient, and we bound
one version in terms of the other.

III. THERMODYNAMIC INFORMATION
ERASURE WITH COMPLEXITY CONSTRAINTS

We now turn to the erasure of the n-qubit memory reg-
ister introduced in Sec. II. What is the optimal work cost
of resetting a state ρ to |0n〉, using the primitive operations
(i)–(iii)?

A. Erasure of qubits with a completely degenerate
Hamiltonian

We first consider a simpler case: each memory qubit
has a degenerate Hamiltonian (Hi = 0 for all i). Let
the elementary computations T be the two-qubit unitary
gates with arbitrary connectivities: T � ⋃

(i,j ) SU(4)i,j .

��� ���

FIG. 4. Protocols for thermodynamic information erasure with
complexity constraints. The process consists of RESET gates (gray
circuit elements), EXTRACT gates (green), and computational
gates (brown) [cf. primitives (i)–(iii) of Fig. 1]. (a) A general
protocol interleaves the primitive operations (i)–(iii), preparing a
state close to |0n〉. The protocol’s complexity cost C and work
cost W follow from summing the primitive operations’ costs
(Fig. 1). (b) In the simplified protocol, one applies � r compu-
tational gates [primitive (iii)]. Then, one erases any qubits far
from |0〉, using RESET operations [primitive (i)]. The circuit com-
presses ρ into fewer qubits, to be erased by RESET operations.
Such protocols extract pure |0〉 qubits in the resource theory of
uncomplexity [30].

The mixed-state fidelity between states σ and τ is defined
as [95]

F(σ , τ) := tr
(√
σ 1/2τσ 1/2

)
. (15)

We define an erasure of ρ as any composition of the
operations (i)–(iii) that transforms ρ into a state ρ ′ sat-
isfying F2

(
ρ ′, |0n〉〈0n|) = 〈0n | ρ ′ | 0n〉 � η, for some fixed

η ∈ (0, 1] [Fig. 4(a)]. One can interpret F2
(
ρ ′, |0n〉〈0n|) as

the probability of preparing |0n〉.
We now quantify the trade-off between the work cost

and complexity cost of an erasure protocol E . Being a
process, E is a sequence of primitive operations. Yet,
we denote by E also the operation implemented by the
sequence, in a slight abuse of notation. Suppose that E has
a complexity at most r � 0: C(E ) � r. The optimal work
cost for such a protocol is

Wr := min
E

{
W(E ) : C(E ) � r, F2(E (ρ), |0n〉〈0n|) � η

}
.

(16)

1. Protocols whose RESET operations happen at the end

As an initial step, we consider an erasure protocol
divided into two parts [Fig. 4(b)]. First, the state under-
goes � r computational gates [primitive (iii)]. Then, RESET
operations [primitive (i)] are applied. Such a protocol’s
optimal work cost is

W∗
r = min

E

{
W(E ) : E =

(∏
i∈W

ERESET,i

)
Er · · ·E1 ,

W ⊂ {1, 2, . . . , n} , F2(E (ρ), |0n〉〈0n|) � η
}

.
(17)
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Here W denotes the subset of the qubits that undergo
RESET operations.

We now identify how to erase ρ using the least amount
of work. We should compress ρ into as few qubits as
possible, using � r gates, to apply as few RESET opera-
tions as possible. In other words, we should perform data
compression with � r gates. This information-theoretic
interpretation of erasure mirrors two earlier interpretations
of erasures: the erasure of n qubits without complexity
restrictions [59] and the erasure of a quantum system using
a quantum memory [60].

We analyzed a version of this compression task in
the context of extracting pure qubits in the resource the-
ory of uncomplexity [30]. A variant of the complexity
entropy, we showed, quantifies the qubits that cannot be
reset to |0〉 states with � r gates. In this subsection, we
adapt that argument to thermodynamic erasure. (We dis-
cuss further applications of the complexity entropy to
information-theoretic tasks in Sec. V.)

Let E denote any protocol that achieves the minimum
in Eq. (17): W(E ) = W∗

r . Assume that the work cost
W(E ) corresponds to βW(E )/ log(2) = |W | =: w bits.
Define the projector P := 1W ⊗ |0n−w〉〈0n−w|W c , wherein
W c denotes the complement of W . Define the POVM
effect

Q := E †
1 · · ·E †

r (P), (18)

wherein each E †
i denotes the adjoint of the operation Ei

[defined via tr (E †
i (A)B) = tr (A Ei(B)) for all operators A

and B]. P projects onto |0〉 each qubit not subject to any
RESET operation, leaving all other qubits untouched. We
choose for the set G of elementary operations, used to
define Mr in Eq. (11), to be the set T of elementary com-
putations, used to define our model in Sec. II A. Q belongs
to Mr. Furthermore,

tr(Qρ) = tr (P Er · · ·E1(ρ))

= tr
{|0n−w〉〈0n−w| trW (Er · · ·E1(ρ))

}

= tr (|0n〉〈0n|E (ρ)) = F2(E (ρ), |0n〉〈0n|) � η,
(19)

so Q is a candidate for the optimization (12) defining
the complexity entropy H r, η

H (ρ) = −Dr, η
H (ρ ‖1). More-

over, since each Ei is unitary, tr(Q) = tr (P Er · · ·E1(1)) =
tr(P) = 2w. Hence,

H r, η
H (ρ)− log(1/η) � log ( tr(Q)/ tr(Qρ))− log(1/η)

� log ( tr(Q)) = w log(2) = βW(E ) = βW∗
r . (20)

A similar inequality points in the opposite direction, as we
show by reversing the steps above. Consider any candi-
date Q ∈ Mr for the optimization (12) defining H r, η

H (ρ) =

−Dr, η
H (ρ ‖1). Let Q be optimal (or arbitrarily close to opti-

mal). By the definition (11), Q = E †
1 · · ·E †

r (P), wherein
each Ei ∈ G and wherein P projects onto |0〉 each qubit in
some subset W c, leaving all other qubits untouched. Let
E := (∏

i∈W ERESET,i
)
Er · · ·E1. E erases ρ, since

F2(E (ρ), |0n〉〈0n|) = tr (|0n〉〈0n|E (ρ)) = tr(Qρ) � η.
(21)

Hence,

βW∗
r � βW(E ) = |W | log(2)

= log ( tr(Q)) � log ( tr(Q)/ tr(Qρ)) = H r, η
H (ρ).

(22)

The last equality holds if Q is optimal. (If Q is arbitrarily
close to optimal, then the last two quantities are arbitrar-
ily close to each other.) We have therefore proved the
following theorem.

Theorem 1 (Complexity-limited erasure with restricted
protocols). Consider erasing an n-qubit system gov-
erned by a fully degenerate Hamiltonian. Every optimal
complexity-limited protocol that uses only primitive (iii)
(wherein T = G consists of unitary operations) followed
by primitive (i), expends an amount W∗

r of work that obeys

H r, η
H (ρ)− log(1/η) � βW∗

r � H r, η
H (ρ). (23)

Two points merit mentioning. First, one might wonder
whether the work cost β−1

[
H r, η

H (ρ)− log(1/η)
]

is achiev-
able. The answer depends on whether one can implement,
with gates in G , a POVM effect Q ∈ Mr that satisfies
tr(Qρ) = η and is arbitrarily close to optimal for H r, η

H (ρ).
In such a case, the first inequality in Eq. (23) saturates:
H r, η

H (ρ)− log(1/η) equals a variant of the complexity
entropy, and that variant, we show, equals βW∗

r . (See
Appendix D 5 and E for details.) Considering the variant’s
definition, one can interpret the log(1/η) in Eq. (23) as a
particularity of how we defined the complexity entropy.

Second, the log(1/η) is proportional to the work won in
a successful bet on an event that occurs with a probability η
[96]. We can understand this point through a simple exam-
ple. Consider resetting the single-qubit maximally mixed
state ρ = 12/2 to |0〉. Suppose that our target success prob-
ability η satisfies η � 1/2. One successful erasure protocol
does nothing: with the probability 1/2, |0〉 is prepared.
Yet standard measures of entropy (including the Rényi
entropies of one-shot information theory [78]) attribute to
ρ one bit of entropy. The zero work cost of erasing a max-
imally mixed qubit with η = 1/2 can be understood as a
sum of (i) one unit of work expended to reduce the entropy
of ρ and (ii) one unit of work extracted by a successful bet
with the success probability 1/2.

We now present a few textbook quantum states and the
work costs of erasing them, in various regimes of r and η.
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a. Computational-basis states. If ρ = |0n〉〈0n|, then
H r, η

H (ρ) = 0 for all r and η. An optimal protocol is to do
nothing—apply no RESET operations and no work: W∗

r = 0.
If ρ = |1n〉〈1n|, then one resets ρ to |0n〉 by flipping each

qubit to |0〉, incurring a minor complexity cost (minor com-
pared to the exponential complexities expected of most
n-qubit unitaries [4]). Assume that n is even, for sim-
plicity. One can flip all n qubits with one layer of n/2
two-qubit gates. Therefore, whenever r � n/2, H r, η

H (ρ) =
0, and W∗

r = 0, for all η. If, however, r < n/2, then one
can flip only 2r < n qubits. One must apply RESET oper-
ations to the other n − 2r qubits. In this case, H r, η

H (ρ) =
(n − 2r) log(2), and W∗

r = (n − 2r) kBT log(2), for all η.

b. The maximally mixed state. If ρ is maximally
mixed, then H r, η

H (ρ) = n log(2) for all r and η. Suppose
that the error tolerance is insignificant: η ≈ 1. An opti-
mal protocol requires n RESET operations, costing the
maximum amount of work: W∗

r = n kBT log(2).

c. Greenberger-Horne-Zeilinger (GHZ) state. Let

|GHZ〉 := 1√
2

(|0n〉 + |1n〉), (24)

and let ρ = |GHZ〉〈GHZ|. One can prepare the GHZ state
with a Hadamard gate followed by n − 1 CNOT gates.
Therefore, H r, η

H (ρ) = 0 if r � n. If r < n, then one can
apply r CNOT gates to disentangle r qubits from the
other n − r qubits. The n − r qubits require RESET oper-
ations. Absent any significant error tolerance (if η ≈ 1),
H r, η

H (ρ) = (n − r) log(2), and W∗
r = (n − r) kBT log(2).

d. A Haar-random state. Let |ψ〉 denote a state cho-
sen randomly according to the Haar measure on the pure
n-qubit states. The state ρ = |ψ〉〈ψ | is indistinguishable
from the maximally mixed state, according to poly(n)-
complex observables [92,93]. Therefore, if r � poly(n),
one cannot distinguish ρ from the maximally mixed state
using � r gates. All n qubits must undergo RESET oper-
ations. Absent any significant error tolerance (if η ≈ 1),
H r, η

H (ρ) = n log(2), and W∗
r = n kBT log(2).

This example constitutes a special case of Proposition
3 in Sec. V D. There, we prove a lower bound on the
complexity entropy of a state generated by a random cir-
cuit. Random circuits effect Haar-random unitaries in the
large-circuit-depth limit.

e. Mixture of different-complexity states. Let ρ denote
a convex mixture of |0n〉〈0n| and a high-complexity
state |ψ〉〈ψ |: ρ = (1 − ε)|0n〉〈0n| + ε|ψ〉〈ψ |, wherein ε ∈

[0, 1 − η]. The POVM effect Q = |0n〉〈0n| is a can-
didate for the optimization (12) defining H r, η

H (ρ) =
−Dr, η

H (ρ ‖1). Therefore, H r, η
H (ρ) � − log(1 − ε), and

W∗
r � −kBT log(1 − ε) ≈ ε kBT (the approximation holds

for small ε).

2. General protocols with midcircuit RESET and
EXTRACT operations

Suppose that each qubit’s Hamiltonian is degenerate.
Suppose further that a process can be any sequence of the
primitives (i)–(iii) [Fig. 4(a)]. A process may interleave
elementary computations with RESET and EXTRACT opera-
tions on the same qubit. These midcircuit nonunitary oper-
ations can reduce the complexity of information erasure.
The significance of midcircuit measurements in monitored
circuits has only recently been appreciated, both in quan-
tum information and in condensed-matter theory. Experi-
mentalists have recently used midcircuit measurements in
quantum error correction and in monitored circuits [97–
99]. Along similar lines, quantum phases of matter driven
by measurements have been explored [100–104]. We seek
to bound Wr, defined in Eq. (16). Our strategy is to map
a general erasure protocol to a different protocol involving
additional auxiliary systems and whose reset operations all
happen at the end. The work cost of the general protocol is
then bounded using an argument adapted from the one in
Sec. III A 1.

We must transform a protocol E into a POVM effect.
Our strategy involves ancillary qubits, each initialized to
|0〉. Every midcircuit RESET operation on qubit i is per-
formable with a final RESET operation: we swap qubit
i with an ancilla, then RESET the ancilla. Similarly,
every midcircuit EXTRACT operation on qubit i is per-
formable with an initial EXTRACT operation: we perform
an EXTRACT operation on an ancilla, then swap the ancilla
with qubit i. In both processes, every ancilla begins and
ends in |0〉 (recall that the EXTRACT operation is per-
formable only on a qubit in |0〉). We assume that the SWAP
gate belongs to T .

Consider any candidate protocol E for the optimization
(16). Suppose that E consists of m1 RESET operations,
m2 EXTRACT operations, and � r gates. E has the com-
plexity cost C(E ) � r and the work cost W(E ) = (m1 −
m2) kBT log(2). Let us transfer all the RESET and EXTRACT
operations in E to ancillas. We obtain a protocol E ′ of
� r + m1 + m2 gates (each SWAP contributes one gate),
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preceded by EXTRACT operations and followed by RESET
operations. E ′ acts on n + m1 + m2 qubits and has the
complexity cost C(E ′) � r + m1 + m2. Immediately after
the initial EXTRACT operations, the input state is

ρ̃m1,m2 := ρ ⊗ |0m1〉〈0m1 | ⊗ 1
⊗m2
2 /2m2 . (25)

Subsequently, E ′ outputs a state E ′(ρ̃) =: ρ̃ ′ satisfying

F2( trm1(ρ̃
′), |0n+m2〉〈0n+m2 |) � η. (26)

We now adapt the argument used for protocols whose
RESET operations happen at the end. Suppose the set G
of elementary operations, used to define Mr in Eq. (11),
equals the set of elementary computations: G = T . Define
the POVM effect

Q := E ′†
(
|0n〉〈0n| ⊗ 1

⊗m1
2 ⊗ |0m2〉〈0m2 |

)
. (27)

Then

tr(Qρ̃) = tr (|0n+m2〉〈0n+m2 | trm1(ρ̃
′)) � η. (28)

Hence, Q is a candidate for the optimization (12) defining
H r+m1+m2, η

H (ρ̃) = −Dr+m1+m2, η
H (ρ̃ ‖1). Therefore,

H r+m1+m2, η
H (ρ̃) � log ( tr(Q)/ tr(Qρ̃))

� m1 log(2)+ log(1/η), (29)

so

βW(E ) � H r+m1+m2, η
H (ρ̃)− m2 log(2)− log(1/η). (30)

We use the shorthand notation

gr,η(ρ) := inf
m1,m2�0

{
H r+m1+m2, η

H (ρ̃m1,m2)− m2 log(2)
}

(31)

and take the infimum of Eq. (30) over all protocols E .
Combining the previous two equations yields

βWr � gr,η(ρ)− log(1/η). (32)

The reverse direction might not hold, generally. For any
m1, m2 � 0, Eq. (23) guarantees the existence of a proto-
col E that has two properties. First, E consists of � r +
m1 + m2 computational gates followed by w RESET opera-
tions. Second, E maps ρ̃ approximately to |0n+m1+m2〉, at
the work cost w log(2) � H r+m1+m2, η

H (ρ̃). Yet, such a pro-
tocol may involve the m1 + m2 ancillas in a computation
inequivalent to any computation on n qubits, even if the
latter computation includes midcircuit RESET and EXTRACT
operations.

Overall, we have bounded the optimal work cost Wr of
erasing ρ using � r computational gates.

Theorem 2 (Bound of optimal work cost). Wr obeys

gr,η(ρ)− log(1/η) � βWr � βW∗
r � H r, η

H (ρ). (33)

A large gap may separate Wr and W∗
r if, with few pure

ancillas, one can uncompute a pure state |χ〉 to |0n〉, using
a circuit much shorter than is possible without ancillas. In
other words, an erasure protocol may benefit from early
RESET operations: the resulting pure qubits may be used as
ancillas for uncomputing the remaining state. For instance,
there might exist an n-qubit state |χ〉, and an �� n, with
the following two properties. First, |χ〉 ⊗ |0�〉 is much
less complex than |χ〉: C

(|χ〉 ⊗ |0�〉) � C(|χ〉). Second,
in the absence of ancillas, r gates fail to extract any |0〉’s
from |χ〉, if r = C

(|χ〉 ⊗ |0�〉). Midcircuit RESET opera-
tions would be able to lower the work cost of erasing
|χ〉〈χ | ⊗ (

1⊗�
2 /2�

)
with at most r = C

(|χ〉 ⊗ |0�〉) gates,
we now show. The following protocol would employ mid-
circuit RESET operations and cost work kBT� log(2): RESET
the � mixed qubits, paying � units of work. Then, uncom-
pute the remaining state, |χ〉 ⊗ |0�〉, to |0n+�〉, using r
gates. The total work cost would be β−1� log(2). In con-
trast, consider a protocol whose RESET operations happen
at the end. r operations would not extract any |0〉’s. Such
a protocol would require n + � units of work: βW∗

r = (n +
�) log(2)� βWr.

B. Erasure of qubits with a general product
Hamiltonian

We now consider a more general setup: each qubit has
a not-necessarily-degenerate Hamiltonian Hi, as per Sec.
II. The set T of elementary computations can no longer
be the set of all two-qubit unitary gates: some gates would
require work.

We require that T contain only completely positive,
trace-preserving maps E that satisfy the technical property

E (�) = �, wherein � = e−β
∑

i Hi =
n⊗

i=1

�i. (34)

The operators �i are defined in Eq. (1). Examples of
such operations include the two-qubit thermal operations
and the two-qubit Gibbs-preserving maps (Sec. II). We
assume Eq. (34) to ensure a thermodynamically consistent
accounting of work costs: elementary computations should
cost no work.

For concreteness, we describe another class of oper-
ations that satisfy condition (34). These operations can
model computations on systems governed by product
Hamiltonians, as well as crude control over interactions
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with a heat bath. Consider an operation, on qubits i and
j , of the form

ρ �→ E (ρ) = (1 − q)Ui,j ρU†
i,j +qγi ⊗ γj . (35)

q denotes a probability. Ui,j denotes an energy-conserving
unitary:

[
Ui,j , Hi + Hj

] = 0. γi
(
γj
)

denotes the thermal
state of qubit i (j ), defined in Eq. (1). With a probability
q, E replaces its input with a thermal state. Otherwise, E
effects an energy-conserving unitary. E can model an inter-
action between qubits and a heat bath over short times,
during which the bath partially thermalizes the qubits.
This interaction may be exploited to implement operations
that do not strictly conserve energy, i.e., that do not com-
mute with the total Hamiltonian. Subjecting γi ⊗ γj to any
operation (35) shows directly that the operation obeys the
condition (34).

Consider any protocol E in T that has two prop-
erties: first, E consists of � r computational gates
followed by RESET operations. Second, E satisfies
F2(E (ρ), |0n〉〈0n|) � η. What is the optimal work cost W∗

r
of such a protocol? The following theorem bounds W∗

r in
terms of the complexity relative entropy, generalizing Eq.
(23) to product Hamiltonians.

Theorem 3 (Optimal work cost for product Hamilto-
nians). The optimal work cost W∗

r is quantified by the
complexity relative entropy as

−Dr, η
H, T (ρ ‖�)− log(1/η) � W∗

r � −Dr, η
H, T (ρ ‖�).

(36)

The subscript T signifies that the set Mr in Eq. (11) is
defined in terms of the gate set G = T .

The proof, provided in Appendix E, resembles the proof
for degenerate Hamiltonians.

IV. WORK COSTS OF GENERAL STATE
TRANSFORMATIONS

We now turn to our paper’s motivating problem. Con-
sider a system that begins in a state ρ and then undergoes
any evolution of complexity at most r � 0. ρ will trans-
form into a possibly different state. Which transformations
appear possible, according to an observer who can distin-
guish states using only some computational power R � 0?
Alternatively, how much work must one invest to effect an
evolution whose complexity is � r and whose output the
observer cannot distinguish from a given state ρ ′?

A. Setting

To formalize the questions above, we consider an n-
qubit system initialized in a state ρ. The state undergoes
an evolution E composed of primitive operations (Sec. II).

C(E ) and W(E ) quantify the complexity cost and work
cost of E , respectively. To establish whether a transforma-
tion ρ → ρ ′ appears to result from E , imagine a referee
who must distinguish the output E (ρ) from the reference
ρ ′. The referee can effect only operations of complexities
� R. Using a measurement operator of complexity � R,
the referee performs a hypothesis test of the form described
in Proposition 1, subject to the type-I and type-II error
constraints specified with η ∈ (0, 1] and δ ∈ (0, 1], respec-
tively. According to the referee, ρ → ρ ′ may result from E
precisely if there exists no hypothesis test by which the ref-
eree can correctly accept E (ρ) with a probability � η and
incorrectly accept ρ ′ with a probability � δ. Equivalently,
by Proposition 1, ρ → ρ ′ may result from E precisely if

DR, η
H

(
E (ρ)

∥∥ ρ ′) � − log(δ/η). (37)

Condition (37) can simplify, evoking the previous
section’s fidelity condition, if the referee lacks computa-
tional restrictions. Depending on the POVMs performable,
the referee could perform the optimal measurement for dis-
tinguishing between ρ and ρ ′. The measurement’s success
probability equals the trace distance 1

2‖ρ − ρ ′‖1, which
is small when the fidelity is large [95]. Hence condition
(37) effectively reduces to a constraint, as in the previous
section, on F .

Let E denote any evolution, of a complexity � r, that
transforms ρ into any state E (ρ) indistinguishable from
ρ ′ by the referee. The minimum work cost of any such
evolution is

W r,R,η,δ[ρ → ρ ′]

:= inf
{

W(E ) : C(E ) � r , DR, η
H

(
E (ρ)

∥∥ ρ ′)

� − log(δ/η)
}

. (38)

This quantity, in its general form, does not appear
amenable to simple analysis. In the following, we
specialize to situations where the referee’s computational
power is extremely high or low. In these situations, we
find examples where one of the conditions in Eq. (38) is
expected to be tractable, as is needed to upper-bound the
work cost.

B. Referee with extremely high computational power

First, suppose that R is extremely large. The first con-
dition in Eq. (38) can be tractable: under certain condi-
tions—see Appendix I—DR, η

H

(
E (ρ)

∥∥ ρ ′) can approximate
the hypothesis-testing relative entropy Dη

H

(
E (ρ)

∥∥ ρ ′)
[defined in Eq. (6)]. The latter can be evaluated via a
semidefinite program (SDP), in principle [82]. Hence one
can, in principle, evaluate each side of condition (37),
as is necessary to calculate the work cost, Eq. (38). (As

010346-12



COMPLEXITY-CONSTRAINED QUANTUM THERMODYNAMICS PRX QUANTUM 6, 010346 (2025)

a caveat, the SDP calculation’s time and memory grow
exponentially in n.)

C. Referee with extremely low computational power

Now, suppose that R is extremely small. The referee may
have great difficulty distinguishing the output E (ρ) from
the reference ρ ′. Consider the extreme case where R = 0:
the referee may perform only the local projective measure-
ments in Eq. (10). We can apply a general upper bound:
denote by σ and τ any n-qubit states; and, by σj and τj ,
the respective reduced states of qubit j . The complexity
relative entropy obeys

DR=0, η
H (σ ‖ τ) �

n∑
j=1

Dη
H

(
σj

∥∥ τj
)

. (39)

The approximation hides error terms that vanish in the
limit as η → 1. One can apply this inequality to evaluate
Eq. (37) and thereby certify that E (ρ) is indistinguish-
able from ρ ′ to a referee who lacks computational power
and tolerates little error. [Inequality (39) follows from
Proposition 18 in Appendix D.]

D. Simple transformation

Suppose that the transformation E involves few primi-
tive operations: r < O(n). Also, suppose that the system is
1D. E can change the system’s entanglement only by an
amount proportional to r. This entanglement is related to
the complexity entropy at small r (see Sec. V C for details).
Hence we expect the first condition in Eq. (38) to relax to
a constraint on entanglement, which we expect to be more
tractable.

V. INFORMATION-THEORETIC FEATURES OF
THE COMPLEXITY ENTROPY

The complexity relative entropy (12) and the complexity
entropy (14) are additions to a large cast of information-
theoretic entropy measures [94,105]. Intuitively, the com-
plexity entropy quantifies a state’s apparent randomness
to an agent who can implement only limited-complexity
measurement effects. Unlike common entropies, the com-
plexity entropy lacks unitary invariance. Indeed, a com-
putationally limited agent may need more work to erase
a state after it has evolved under a complex unitary (cf.
examples in Sec. III A).

In this section, we present the complexity entropy’s
properties, as well as its applications to information-
theoretic tasks. Most generally, the complexity (relative)
entropy is defined for an abstract family {Mr} of sets. Each
Mr denotes the set of POVM effects of complexities at
most r � 0. This formalism generalizes the above, n-qubit
constructions to arbitrary discrete quantum systems. In

Appendix D, we present the general definition of the com-
plexity (relative) entropy and prove the properties stated
below. Here, to achieve a simpler and more concrete pre-
sentation, we focus on an n-qubit system and on the family
{Mr} defined by Eq. (11).

For information-theoretic applications, it is convenient
to measure entropy in units of bits, rather than in nats
[1 bit = log(2) nats]. In this section, we denote with an
overbar entropies expressed in units of bits; these entropies
are related to their counterparts by the factor log(2):

H(ρ) = H(ρ)/ log(2),

D
η

H(ρ ‖ σ) = Dη
H(ρ ‖ σ)/ log(2),

H
η

H(ρ) = H η
H(ρ)/ log(2),

D
r, η
H (ρ ‖ σ) = Dr, η

H (ρ ‖ σ)/ log(2), etc.

(40)

The factor [log(2)]−1 changes natural logarithms to base-2
logarithms in the entropies’ definitions. For instance, the
von Neumann entropy H(ρ) = − tr(ρ log ρ), expressed in
units of bits, is H(ρ) = − tr

(
ρ log2 ρ

)
.

A. Overview of elementary properties

In this subsection, ρ denotes any quantum state, and
� any positive-semidefinite operator, defined on the n-
qubit Hilbert space. Let r � 0 and η ∈ (0, 1]. The com-
plexity relative entropy inherits some properties from
the hypothesis-testing relative entropy (6). For example,
D

r, η
H (ρ ‖�), like D

η

H(ρ ‖�), monotonically decreases as
η increases. The greater an agent’s error intolerance (the
greater the η), the more mixed ρ appears [the greater
H r, η

H (ρ) is]. The complexity (relative) entropy also has
properties that reflect its sensitivity to state complexity.
For example, D

r, η
H (ρ ‖�) monotonically increases as r

increases. The greater an agent’s computational power
(the greater the r), the less mixed ρ appears [the less
H r, η

H (ρ) is]. These monotonicity properties imply that ρ
is more distinguishable from � to an observer who has
greater computational power and has a higher tolerance for
guessing � when given ρ.

Furthermore, the complexity (relative) entropy has the
same range as the hypothesis-testing (relative) entropy:

D
r, η
H (ρ ‖�) ∈ [− log2 ( tr(�)), − log2(‖�‖)

]
, and

(41a)

H
r, η
H (ρ) ∈ [0, n]. (41b)

The complexity relative entropy, like standard relative
entropies, enjoys a scaling property in its second argument:
for all λ > 0, D

r, η
H (ρ ‖ λ�) = D

r, η
H (ρ ‖�)− log2(λ).

By construction, the complexity (relative) entropy is not
unitarily invariant. On similar grounds, it does not satisfy
a data-processing inequality. Indeed, unitary evolution is
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a special case of data processing. Furthermore, a unitary
can increase or decrease a pure state’s complexity. There-
fore, a unitary can increase or decrease a state’s complexity
entropy. Nevertheless, the complexity (relative) entropy
monotonically increases (decreases) under partial traces.
Tracing out k qubits from ρ yields

D
r, η
H (ρ ‖�) � D

r, η
H

(
trk(ρ)

∥∥ trk(�)
)
, (42a)

H
r, η
H (ρ) � H

r, η
H

(
trk(ρ)

)+ k. (42b)

The complexity (relative) entropy is greater (less) than
or equal to the hypothesis-testing (relative) entropy:
H

r, η
H (ρ) � H

η

H(ρ) and D
r, η
H (ρ ‖�) � D

η

H(ρ ‖�). In the
large-r limit, one would expect the complexity (relative)
entropy to converge to the hypothesis-testing (relative)
entropy. Yet, an exact convergence might not occur: some
POVM effects might not be well approximated by any
effect in Mr. This is due to our choice of Mr and to the
lack of ancillas in our computational model. Neverthe-
less, we show in Appendix I that, under certain condi-
tions, the complexity (relative) entropy approximates the
hypothesis-testing (relative) entropy up to constant error
terms. Alternatively, one might hope to ensure conver-
gence to the hypothesis-testing (relative) entropy by allow-
ing the use of one ancillary qubit in implementations of
measurement effects, as introduced in Ref. [17].

B. Bounds from well-known complexity measures

To what extent does the complexity entropy H
r, η
H (ψ)

quantify the complexity of a pure state ψ ≡ |ψ〉〈ψ |? We
bound the complexity entropy in terms of two complex-
ity measures: the strong complexity of Ref. [17] and the
approximate circuit complexity (Definition 5 in Appendix
B). We describe the bounds qualitatively here, deferring
rigorous statements, and proofs thereof, to Appendix D 4.

The complexity entropy reflects approximate circuit
complexity as follows. Assume that the set G , used in
the definition (11), contains only unitary gates. Consider
beginning with some reference state, then applying gates
in G to prepare any state ε-close to |ψ〉 in trace distance.
Let Cε(|ψ〉) denote the least number of gates in any such
process. Cε(|ψ〉) is the ε-approximate circuit complexity

of |ψ〉. For all r � Cε(|ψ〉), H
r, 1−ε2

H (ψ) ≈ 0. Furthermore,

H
r, 1−ε2

H (ψ) 	≈ 0 for all r < C2ε(|ψ〉) (see Proposition 20).
The complexity relative entropy also obeys an upper bound
involving the strong complexity of Ref. [17] (see Proposi-
tion 21).

C. Bounds from entanglement

We lower-bound an n-qubit state’s complexity entropy
using a measure of the state’s entanglement. Consider a 1D
chain S of n � 2 qubits: S = S1S2 . . . Sn. Let ρ denote any

state of S. We define the following entanglement measure:

E(ρ) := 1
n − 1

n−1∑
j=1

I (S1 . . . Sj : Sj+1 . . . Sn)ρ . (43)

I (A : B)ρ := H (A)ρ + H (B)ρ − H (AB)ρ denotes the
quantum mutual information defined in terms of the von
Neumann entropy H (X )ρ := − tr(ρ log ρ). The mutual
information quantifies all correlations—classical and
quantum—including correlations due to entanglement.

Assume that the operations G in Eq. (11) are unitary
gates that can act nontrivially only on two neighboring
qubits (the gates are geometrically local). We upper-bound
the change in E(ρ) under one gate in G .

Proposition 2 (Change in E(ρ) under a two-qubit uni-
tary). Let ρ denote any quantum state of a 1D chain S
of n � 2 qubits. Let U denote any unitary that can act
nontrivially only on two neighboring qubits in S. Then

∣∣E(
UρU†)− E(ρ)

∣∣ � 8 log(2)
n − 1

. (44)

To prove Proposition 2, one observes that U can alter
only one mutual information in Eq. (43)—the mutual infor-
mation associated with (the bipartition that separates) the
qubits on which U can act nontrivially. In Appendix G, we
generalize Eq. (44) to account for the potential entangling
power [27] of G . This power quantifies the entanglement
generable by one gate in G .

By repeatedly applying Eq. (44), we upper-bound the
change in E(ρ) under � r gates in G . We then lower-bound
the complexity entropy H r, η

H (ρ) in terms of E(ρ) as

H r, η
H (ρ) � 1

η

[
E(ρ)− r

8 log(2)
n − 1

+ H(ρ)+ error terms
]

.

(45)

The error terms depend on η and n and vanish in the limit
as η → 1. See Appendix G for details. In Appendix H,
we also investigate similar bounds that arise from nat-
ural dynamics under local Hamiltonians. This setting is
particularly relevant to locally interacting systems.

D. Evolution of the complexity entropy under
random circuits

Consider an n-qubit circuit generated with gates sam-
pled Haar randomly from all two-qubit gates. The circuit
effects a unitary. As the circuit depth grows, the unitary’s
complexity grows, until saturating at a value exponential
in n. The complexity growth is at least sublinear [17] and,
for some nonrobust complexity measures [18,19,106], is
linear. We ask how well the complexity entropy tracks the
complexity of a pure state evolving under a random circuit.
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We consider brickwork circuits [18,56]. A brickwork
circuit consists of staggered layers of nearest-neighbor
two-qubit gates.

The following proposition reveals the behaviors of the
complexity entropy at a fixed complexity scale r: under
short circuits, the complexity entropy vanishes. Around
a circuit depth t commensurate with r, the complexity
entropy transitions to a near-maximal value (Fig. 3). We
bound the interval of t values in which the transition hap-
pens to values satisfying t ∼ r. We prove the proposition
using a strategy borrowed from Ref. [17], which contains
a similar proposition about the strong complexity.

Proposition 3 (Transition of the complexity entropy
under random circuits). Consider a depth-t, random n-
qubit circuit V whose gates act in a brickwork layout. Let
|ψ〉 := V |0n〉, r � 0, and η ∈ (0, 1]. If the circuit is short,
such that t � O(r), then

H
r, η
H (|ψ〉〈ψ |) = 0. (46)

If the circuit is long, such that t � �(rn3), then

H
r, η
H (|ψ〉〈ψ |) � n − log2(2/η), (47)

except with a probability e−�(n) over the sampling of V.

The proof of Eq. (46) is immediate: one can use the cir-
cuit V to construct a candidate Q = V†|0n〉〈0n|V ∈ Mr for
the optimization (12) that defines H

r, η
H (|ψ〉〈ψ |). The proof

of Eq. (47) is presented in Appendix F.

E. Data compression under complexity limitations

The complexity entropy naturally quantifies the optimal
efficiency of data compression under computational lim-
itations. Let ρ denote any n-qubit state; m, a number of
qubits; and ε ∈ [0, 1], an error parameter. To perform data
compression under complexity limitations, one seeks a uni-
tary U, composed from � r two-qubit gates, such that some
subset W ⊂ {1, 2, . . . , n} of |W | = m qubits satisfies

F2( trW (UρU†), |0n−m〉〈0n−m|) � 1 − ε. (48)

One compresses ρ onto the qubits of W , with an accu-
racy 1 − ε and using � r gates. For background, consider
an agent who lacks complexity limitations (who operates
in the limit as r → ∞). The hypothesis-testing entropy
quantifies the optimal one-shot data-compression size of
ρ [82]

moptimal ≈ H
1−ε
H (ρ). (49)

Every protocol for data compression under complexity
limitations can be mapped to a “simple” protocol for era-
sure. The erasure protocol consists of computational gates

followed by RESET operations [see Fig. 4(b)]. The least
number moptimal,r of qubits onto which ρ can be com-
pressed, with an accuracy 1 − ε and using � r gates,
satisfies

H
r, 1−ε
H (ρ)− log2(1/[1 − ε]) � moptimal,r � H

r, 1−ε
H (ρ).

(50)

The complexity entropy H
r, 1−ε
H (ρ) is defined with respect

to the set G of all two-qubit gates. In Appendix J, we prove
Eq. (50).

F. Complexity conditional entropy

In information theory, conditional entropy measures
quantify the randomness of a system A, as apparent to an
observer given access to a system B that may share corre-
lations with A. The conditional entropy appears throughout
classical and quantum information theory. Applications
include communication [62,63,107], thermodynamic era-
sure with side information [60], and quantum entropic
uncertainty relations [108]. Consider defining a conditional
entropy H ∗(A |B)ρ of a state ρAB. A standard technique is
to identify an appropriate relative entropy D∗ and to set
H ∗(A |B)ρ := −D∗(ρAB ‖1A ⊗ ρB). Here, ρB := trA(ρAB)

is the reduced state of ρ on B [94].
H ∗(A |B)ρ reflects one’s ability to distinguish ρAB from

a state that provides the same knowledge about B (B
is in state ρB) but minimal knowledge about A (A is
maximally mixed and uncorrelated with B). In this inter-
pretation, D∗ quantifies the notion of distinguishability.
Conditional entropies defined as above include the condi-
tional min- and max-entropies and the conditional Rényi-α
entropies [94].

We employ the complexity relative entropy (12) to
define the complexity conditional entropy. Denote any
arbitrary bipartite state by ρAB. For all r � 0 and η ∈ (0, 1],
the complexity conditional entropy of ρAB is

H
r, η
H (A |B)ρ := −D

r, η
H (ρAB ‖1A ⊗ ρB). (51)

We prove the following properties of the complex-
ity conditional entropy. It, like the complexity entropy,
decreases monotonically as r increases and increases
monotonically as η increases. Furthermore, the complexity
conditional entropy is bounded in terms of the Hilbert-
space dimensionality of A, dA, as

−log2(dA) � H
r, η
H (A |B)ρ � log2(dA). (52)

The complexity conditional entropy also exhibits strong
subadditivity: for every tripartite state ρABC,

H
r, η
H (A |BC)ρ � H

r, η
H (A |B)ρ . (53)

The strong subadditivity follows from the complexity rela-
tive entropy’s monotonicity under partial traces. We prove
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Eqs. (52) and (53) in Appendix D 6. The complexity con-
ditional entropy has operational significance in a variant
of the information-theoretic task of decoupling, we show
next.

G. Decoupling from a reference system

First, we define the decoupling of a system A from a
system R. Define dA as the Hilbert-space dimensionality of
A and πA := 1A/dA as a maximally mixed state. We say
that A is maximally mixed and decoupled from R if the
joint state ρAR is the product πA ⊗ ρR [109]. Decoupling
A from R means transforming a general ρAR into a state
ρ ′

AR close to a state in which A is maximally mixed and
decoupled from R [62,63]. Decoupling is an information-
theoretic primitive applied in randomness extraction [78,
110], quantum communication [62], and thermodynamic
erasure with side information [60].

The standard information-theoretic task of decoupling
can be defined as follows. Alice possesses an n-qubit sys-
tem A that might be correlated with a reference R. The
joint system begins in a state ρAR. First, Alice applies to A
a unitary U0, preparing (U0 ⊗ 1R)ρAR(U0 ⊗ 1R)

† =: ρ ′
AR.

Then, Alice discards a subsystem A1 formed from k � 0
qubits of A. A subsystem A2, formed from n − k qubits,
remains. Alice sends A2 to a referee, who possesses R. The
referee attempts to distinguish the reduced state ρ ′

A2R from
πA2 ⊗ ρR. Alice succeeds if the referee cannot distinguish
the states to within some error tolerance. Alice can ensure
that ρ ′

A2R approximates ρ ′
A2

⊗ ρR if [63]

k � 1
2

[
n − H

ε

min(A |R)ρ
]
. (54)

ε > 0 denotes a tolerance parameter. H
ε

min(A |R)ρ denotes
the smooth conditional min-entropy of ρ [63,94].

Here, we introduce a complexity-constrained variant of
decoupling. Assume that R consists of qubits. Assume
further that both Alice and the referee can implement
two-qubit gates that form a set universal for quantum com-
putation. We define our decoupling task as the task above,
except we impose two complexity constraints. First, we
constrain Alice’s computational power, requiring that U0
be implementable with at most r0 � 0 gates. Second, we
constrain the referee’s computational power. Using at most
r1 � 0 gates, the referee performs a hypothesis test of the
form described in Proposition 1, subject to type-I and type-
II error constraints specified with η ∈ (0, 1] and δ ∈ (0, 1],
respectively. Alice succeeds in our decoupling task if there
exists no hypothesis test by which the referee can cor-
rectly accept ρ ′

A2R with a probability � η and incorrectly
accept πA2 ⊗ ρR with a probability � δ. Equivalently, by
Proposition 1, Alice is successful if

D
r1, η
H

(
ρ ′

A2R

∥∥∥πA2 ⊗ ρR

)
� − log2(δ/η). (55)

In terms of the complexity conditional entropy H
r1, η
H (

|A2)Rρ
′, the condition (55) is

n − k − H
r1, η
H (A2 |R)ρ′ � − log2(δ/η). (56)

Thus, Alice succeeds if H
r1, η
H (A2 |R)ρ′ is sufficiently close

to its maximum value, n − k.
Before quantifying Alice’s decoupling capabilities, we

posit two expectations. First, we do not expect Alice’s
complexity constraint to meaningfully change the num-
ber of qubits that she can decouple from R (unless r0 is
very small). Indeed, one may achieve near-optimal decou-
pling by choosing for U0 to be a random circuit of only
O(n log2(n)) gates, in an all-to-all-coupling model [111].

In contrast, we expect the referee’s complexity con-
straint to substantially increase the number of qubits that
Alice can decouple from R, by enabling Alice to succeed
with strategies that would fail at standard decoupling. For
instance, consider a highly complex, maximally entangled
state ρAR. In the standard scenario, Alice cannot decouple
any qubits from R. [We can check this claim by substitut-
ing H

ε

min(A |R)ρ = −n in Eq. (54).] Now, suppose that the
referee is computationally limited. Alice’s system is appar-
ently decoupled from R already: a complex state can be
indistinguishable from a maximally mixed state, so the ref-
eree cannot distinguish ρAB from a decoupled state. More
precisely, suppose that ρAR is maximally entangled, that
η = 1, and that the referee has unlimited computational
power. Alice cannot decouple n − k qubits from R, if δ �
2−2(n−k). [If Alice discards k qubits, then ρ ′

A2R is a uniform
mixture of 2k pure states. In an optimal strategy, the referee
transforms ρ ′

A2R into ρ ′′
A2R := |02(n−k)〉〈02(n−k)| ⊗ (

1⊗k
2 /2k

)
,

before implementing the measurement effect

Q := |02(n−k)〉〈02(n−k)| ⊗ 1⊗k
2 . (57)

Consequently, the referee can distinguish ρ ′
A2R from πA2 ⊗

ρR = πA2R: D
r1, η
H (ρ ′

A2R ‖πA2 ⊗ ρR) = − log2( tr(QπA2R)/

tr(Qρ ′′
A2R)) = 2(n − k) � − log2(δ/η).] Now, however,

suppose that the referee’s computational power is sub-
stantially limited and that ρAR is highly complex. Alice
may be able to decouple n − k (or more) qubits even if
δ � 2−2(n−k): the referee may require more computational
power to perform a unitary necessary for distinguishing
ρ ′

A2R from πA2 ⊗ ρR.
How many qubits k must Alice discard to convince the

referee that a maximally mixed, decoupled state was pre-
pared? We present a bound that generalizes Eq. (54) to
our decoupling task. The bound holds if one assumes that
the complexity conditional entropy obeys an inequality
reminiscent of the Rényi-entropy chain rule [112,113].

Conjecture 1 (Chain rule for the complexity conditional
entropy). Let ρABR denote a quantum state of systems A,
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FIG. 5. Decoupling with respect to a computationally bounded
referee. Alice’s system A might be correlated with a reference
system R. Alice applies to A a unitary U0, then discards k qubits
of A. Alice retains an (n − k)-qubit system A2. Alice succeeds
in our decoupling task if a referee cannot, using a circuit of
� r1 gates, distinguish the final state of A2R from πA2 ⊗ ρR.
The success condition depends on the conditional complexity
entropy H

r1, η
H (A2 |R)ρ′ . Conjecturing a property of that entropy,

we bound, in terms of H
r, η
H (A |R)ρ , the number of qubits that

Alice can decouple from R. Our bound mirrors the bound (54),
which holds in the absence of complexity constraints.

B, and R of nA, nB, and nR qubits. Let r � 0 and η ∈ (0, 1].
We conjecture that

H
r, η
H (B |R)ρ � H

r, η
H (AB |R)ρ + nA. (58)

In words, introducing a system A can decrease the com-
plexity conditional entropy by, at most, the size nA of A.
The von Neumann conditional entropy H (B |R) obeys an
analogous bound, due to a chain rule and the lower bound
H (A |BR) � −nA: H (B |R) = H (AB |R)− H (A |BR) �
H (AB |R)+ nA. This H (B |R) bound reflects how intro-
ducing A can resolve only as much randomness as A can
store. Indeed, the bound saturates whenever A is maxi-
mally entangled with B (R). In such a case, B and R are
uncorrelated, and A purifies a maximally mixed state of
B (R). Hence A resolves nA maximally mixed qubits’ ran-
domness. Similar bounds follow from chain rules for Rényi
entropies [112,113].

Using Conjecture 1, we prove a bound on the number of
qubits that Alice can decouple from R.

Theorem 4 (Upper bound on the number of qubits that
Alice can decouple). Consider the complexity-restricted
decoupling described above and depicted in Fig. 5. Sup-
pose r1 � r0. Assume Conjecture 1. Under the condition
(55) (if Alice is successful), then

k � 1
2

[
n − H

r1−r0, η
H (A |R)ρ + log2(δ/η)

]
. (59)

We prove Theorem 4 in Appendix K. The bound (59)
mirrors the bound (54), which governs decoupling with-
out complexity restrictions. Indeed, if η ≈ 0, the condi-
tional hypothesis-testing entropy approximates the smooth
conditional min-entropy [82]. As such, one can inter-
pret the conditional complexity entropy, when η ≈ 0, as a
complexity-aware version of the conditional min-entropy.

The general achievability of the bound (59) is unknown.
A standard technique for proving standard decoupling’s

achievability involves bounding the trace distance between
a protocol’s output and a decoupled target, using the
Hilbert-Schmidt norm [62,63,114]. One cannot readily
extend this technique to Theorem 4: while the trace
distance’s operational definition naturally extends to
complexity-restricted POVM effects [17], such an exten-
sion is unknown for the Hilbert-Schmidt norm.

Conjecture 1 appears to preclude a kind of pseudoran-
dom quantum state that we call a pseudomixed state. Let A
and B denote systems of nA and nB qubits, respectively. Let
|χ〉AB denote a pure state of AB. Let r � 0 and η ∈ (0, 1].
|χ〉AB is an efficiently preparable pseudomixed state on B
if the complexity entropy of |χ〉 is low, H

r, η
H (|χ〉〈χ |) ≈ 0,

while the complexity entropy of the reduced state χB :=
trA(|χ〉〈χ |) is high:

H
r, η
H (χB) � �( exp(nA)). (60)

In other words, B appears exponentially more mixed with-
out the purifying A. The condition (60) directly contradicts
the conjecture (58). Therefore, any efficiently prepara-
ble pseudomixed state would disprove Conjecture 1. We
can therefore interpret Conjecture 1 as a no-efficient-
pseudomixedness conjecture.

A naïve approach to efficiently constructing a pseu-
domixed state from pseudorandom states [115,116] may
fail. Standard constructions of pseudorandom states take as
inputs short, random bit strings κ . The constructions yield
efficient circuits for states |φκ〉 that have the following
property: no efficient quantum algorithm can distinguish
poly(n) copies of |φκ〉 from the same number of copies
of a Haar-random state. One could naïvely expect to con-
struct a pseudomixed state efficiently in the following
way. Consider an n-qubit system formed from two subsys-
tems: an O( log(n))-qubit subsystem A and an O(n)-qubit
subsystem B. One can efficiently prepare the state

|ψ〉AB :=
∑
κ

|κ〉A ⊗ |φκ〉B (61)

from |0n〉, because pseudorandom states are efficiently
preparable. Let rgen � poly(n) denote the number of gates
required to prepare |ψ〉AB. (One can generate |ψ〉AB by
first preparing A in

∑
κ |κ〉A, by applying Hadamard gates.

Then, one implements a controlled unitary
∑

κ |κ〉〈κ|A ⊗
Uκ . Uκ denotes an efficient unitary that prepares |φκ〉.) For
all η, H

rgen, η
H (|ψ〉〈ψ |) = 0. Denote by ψB := trA(|ψ〉〈ψ |)

the reduced state of B. By discarding A, one forgets the
seed κ used to construct the pseudorandom state |φκ〉B.
Therefore, no efficient algorithm can distinguish ψB from
a Haar-random state. |ψ〉AB may appear to violate Conjec-
ture 1, looking highly mixed to a computationally limited
observer. Nevertheless, ψB may have a low complexity
entropy, since the pseudorandom states have low com-
plexities. (ψB appears mixed to a computationally limited
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observer because the state’s preparation circuit, repre-
sented by the seed, is unknown. Evaluating the complexity
entropy, we imagine an observer who is given black-box
access to a circuit that prepares the state. Under such
circumstances, pseudorandom states do not look random.
To appear highly mixed with respect to the complexity
entropy, a pure state must have high complexity.) Thus,
|ψ〉AB does not necessarily constitute a counterexample to
Conjecture 1.

VI. DISCUSSION

Our framework highlights quantum complexity in ther-
modynamics. Thermodynamics is operational: it concerns
how efficiently an agent, given certain resources, can
accomplish certain tasks. We incorporate into a version
of the theory complexity restrictions on (i) the agent’s
operations and (ii) the evaluation of the agent’s output.
This “agent” could be human, could consist of a system’s
natural dynamics, etc.

Our framework introduces a new role for time in ther-
modynamics: a complex process requires a long time.
Conventional thermodynamics distinguishes only what is
possible and impossible. Augmented with complexity, our
model of thermodynamics dictates what is practical and
impractical. A spin glass illustrates the need to incorporate
complexity restrictions into thermodynamics: according to
the conventional thermodynamic laws, a spin glass can
cool to low-temperature states. However, this cooling pro-
cess would require a very long time, or a highly complex
process.

We illustrated the interplay between complexity and
conventional thermodynamics through Landauer erasure.
Consider aiming to erase a highly complex pure state.
One could “uncompute” the state, paying in complexity.
Alternatively, one could erase every qubit, paying work.
More generally, consider resetting an arbitrary state ρ with
a success probability η. The complexity entropy H r, η

H (ρ)

quantifies the trade-off between the complexity and work
costs.

Landauer erasure is one of many thermodynamic and
information-processing tasks. We analyzed data compres-
sion and decoupling, as well. Many tasks merit analy-
sis in the presence of complexity constraints. We expect
complexity-restricted entropies to quantify these tasks’
optimal efficiencies.

Our entropies quantify how mixed a state appears to a
computationally limited agent. For instance, even a pure
state can have a high complexity entropy, if uncomputable
by an agent. Hence the complexity entropy quantifies a
variation on pseudorandomness—more specifically, pseu-
domixedness: randomness apparent in determinstic phe-
nomena, due to the observer’s computational limitations.

Unlike the standard hypothesis-testing entropy, the
complexity entropy cannot be approximated via convex

optimization. We expect that computing the complex-
ity entropy is typically hard, given strong evidence that
computing the state complexity is hard [117,118]. Yet it
might be possible to derive more-tractable bounds for the
complexity entropy in specific settings. Examples include
low-complexity regimes as well as settings featuring ran-
dom dynamics. We derived such a bound for pure states
evolving under random circuits (Sec. V D).

Other measures have been defined to quantify com-
plexity or apparent randomness: the computational min-
entropy [119], the coarse-grained entropy [120], the obser-
vational entropy [121], the logical depth [122], and the
quantum Kolmogorov complexity [53,123]. These mea-
sures reflect different approaches to quantifying complex-
ity, as illustrated in the introduction. Rigorous comparisons
between these quantities and the complexity entropies
merit future work.

The main text illustrates the complexity entropies’ prop-
erties and usefulness; but generalizations are possible, and
many are provided in Appendix D. For example, sys-
tems can be generalized beyond qubits to qudits. We
expect extensions to continuous-variable systems to be
achievable. Also, the complexity measure used can be
replaced, as with Nielsen’s complexity [124–127]. One
could even replace r with a matrix-product-state bond
dimension—anything that constrains the POVM effects
implementable. One need only specify those POVM effects
to construct general complexity entropies.

Another opportunity is to literally analyze—break
apart—our RESET and EXTRACT operations. We have pre-
sented these operations as a computation’s basic units.
Yet each operation may consist of multiple steps, entail-
ing extra costs. To incorporate these costs into our proofs,
one could apply results from Ref. [47]. Furthermore, we
attributed to the RESET the ideal work cost of kBT ln(2).
Any realistic RESET will cost more work. Such extra
costs can be absorbed straightforwardly into our assump-
tions. Alternatively, we could consider a different set of
primitives E that have fixed work costs W(E ) and com-
plexity costs C(E ). (Any primitive operation could cost
a nonzero amount of work and a nonzero amount of
complexity.) One possibility is to follow the approach in
Ref. [40]. That is, allow as a primitive operation every
completely positive, trace-preserving two-qubit map E .
Then assign to E a complexity cost of 1 and a work
cost quantified by log ‖eβH/2E (e−βH )eβH/2‖, wherein H
denotes the operated-on system’s Hamiltonian. Using this
approach, one could lower-bound a process’s thermody-
namic costs [40].

Complexity was recently incorporated into thermody-
namics alternatively, in a resource theory [30]. In the
resource theory of uncomplexity, an agent can perform
arbitrarily many free operations. Each operation is slightly
noisy, and the agent will have a natural noise toler-
ance. Hence the agent will naturally limit the number of
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operations they perform. In the present paper, the agent’s
complexity restriction is a hard, external constraint. Just
as complexity has recently emerged in resource theories,
pseudorandomness has emerged in studies of quantum
gravity [24,128,129]. We therefore anticipate the com-
plexity entropy’s utility in understanding black holes in
the context of the AdS-CFT correspondence, uniting tools
of quantum information theory, high-energy physics, and
statistical physics.
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APPENDIX A: PRELIMINARIES, NOTATION,
AND USEFUL LEMMAS

Throughout these Appendices, we use the following
definitions and conventions. We denote the set of non-
negative reals by R+ := {x ∈ R : x � 0}. We consider a
system S equipped with a Hilbert space HS of a finite
dimensionality dS. For any system R distinct from S, we
denote the composition of S and R by SR. HS, as well
as spaces of operators and of superoperators on HS, are
equipped with the standard topology of C

dS . We denote
the identity operator on HS by 1S. We denote the identity
superoperator on HS by idS. We denote the single-qubit
identity operator by 12. For any Hermitian operators A
and B, we write A � B if B − A is positive semidefinite. A
subnormalized quantum state ρS is a positive-semidefinite
operator that satisfies tr(ρS) � 1. If tr(ρS) = 1, then ρS
is normalized and represents a physical quantum state. In
the absence of ambiguity, we omit system subscripts from
operators. We denote the projector onto a pure state |ψ〉 by
ψ := |ψ〉〈ψ |. We denote by πS := 1S/dS the maximally
mixed state of S. For any sets X and Y of operators, we
define X ⊗ Y := {A ⊗ B : A ∈ X , B ∈ Y}. An operator A
has the operator norm ‖A‖, defined as the greatest sin-
gular value of A. The trace norm ‖A‖1 is the sum of the
singular values of A. We denote by |0〉 the eigenvalue-1

eigenvector of the Pauli-z operator. Tensor products are
notated as |0k〉 := |0〉⊗k. A POVM effect Q on a system
S is a (Hermitian) positive-semidefinite operator satisfy-
ing 0 � Q � 1S. Finally, all logarithms are base-e, unless
otherwise indicated.

The diamond norm of a superoperator X on HS is
defined as

‖X ‖� := max
ρSR

{‖(X ⊗ idR)(ρSR)‖1
}
. (A1)

R denotes any system isomorphic to S, and the maximiza-
tion is defined with respect to all subnormalized states ρSR.
For any subnormalized state ρ on S, the diamond norm
‖X ‖� upper-bounds the trace norm ‖X (ρ)‖1 as

‖X (ρ)‖1 = ‖(X ⊗ idR)(ρS ⊗ ρR)‖1 � ‖X ‖�. (A2)

For any completely positive, trace-preserving maps E and
F , the diamond distance 1

2‖E − F‖� quantifies the one-
shot distinguishability of E and F [109].

For any state ρ of S, the von Neumann entropy of
ρ is H (ρ) ≡ H (S)ρ := −tr(ρ log(ρ)). For any positive-
semidefinite operator � on HS, the (Umegaki) quantum
relative entropy of ρ with respect to � is D(ρ ‖�) :=
tr (ρ[log(ρ)− log(�)]). If S is a joint system, S = XY, the
conditional quantum entropy H (X |Y)ρ is H (X |Y)ρ :=
H (XY)ρ − H (Y)ρ .

The following inequality is used often in quantum infor-
mation theory. The inequality is equivalent to a general
lower bound on a version of the conditional min-entropy
[78,94].

Lemma 1 (Partial order for joint states). Let X and
Y denote distinct quantum systems. If ρXY denotes any
subnormalized state on XY, then

1
dX
ρXY � 1X ⊗ ρY. (A3)

Proof. Let C denote a system isomorphic to X . Let
{|j 〉X } and {|j 〉C} denote bases for the eigenspaces of X and
C. If |χ〉C := ∑

j |j 〉C /
√

dX , then ρXY ⊗ χC � ρXY ⊗ 1C,
since χC � 1C. Every positive map preserves the partial
order on operators. [If N is a positive (linear) map acting
on operators A and B � A, then N (B) � N (A): N (B −
A) = N (B)− N (A) is positive-semidefinite, since B −
A is positive-semidefinite.] Hence, conjugating both sides
of ρXY ⊗ χC � ρXY ⊗ 1C by

∑
j |j 〉〈j |X ⊗ 〈j |C yields the
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pinching inequality

ρXY = dX

⎛
⎝∑

j

|j 〉〈j |X ⊗ 〈j |C

⎞
⎠(ρXY ⊗ χC)

×
(∑

k

|k〉〈k|X ⊗ |k〉C

)

� dX

∑
j

|j 〉〈j |X 〈j |X ρXY |j 〉X . (A4)

In terms of the Fourier-transformed states |l̃〉X :=∑
j ei2π lj /dX |j 〉X /

√
dX , the pinching inequality is

ρXY � dX

∑
l

|l̃〉〈l̃|X 〈l̃|X ρXY |l̃〉X . (A5)

Applying the positive map dX
∑

j |j 〉〈j |X 〈j |X (·) |j 〉X to
both sides of Eq. (A5) yields

dX

∑
j

|j 〉〈j |X 〈j |X ρXY |j 〉X

� d2
X

∑
jl

|j 〉〈j |X
∣∣∣〈j 〉 l̃X

∣∣∣
2
〈l̃|X ρXY |l̃〉X

= dX 1X ⊗ trX (ρXY) = dX 1X ⊗ ρY. (A6)

We have used
∣∣∣〈j 〉 l̃X

∣∣∣
2
= 1/dX . Chaining together Eqs.

(A4) and (A6) proves the lemma. �

The following lemma provides a useful expression for,
and bound on, the diamond distance between a unitary
operation and the identity process.

Lemma 2 (Diamond distance between a unitary opera-
tion and the identity process). Let U denote any unitary
operator, and let U (·) := U(·)U†. It holds that

1
2
‖U − id‖� = sin

(
min

{
e(U),

π

2

})
, (A7)

where

e(U) : = min
{‖H‖ : H = H †, ∃χ ∈ R

such that e−iH = e−iχU
}

. (A8)

Furthermore,

1
2
‖U − id‖� � ‖U − 1‖. (A9)

The quantity e(U) is called the potential entangling
power of U; a similar quantity is defined in Ref. [27]. e(U)

is insensitive to global phases: for all χ ∈ R, e(eiχU) =
e(U).

Inequality Eq. (A9) automatically yields an upper bound
on the diamond distance between arbitrary unitary opera-
tions. For all unitaries U and V acting on the same Hilbert
space, the operations U (·) := U(·)U† and V (·) := V(·)V†

obey

1
2
‖U − V ‖�

= 1
2
‖V †U − id‖� � ‖V†U − 1‖ = ‖U − V‖.

(A10)

The first (second) equality follows from the diamond
(operator) norm’s invariance under unitary operations
(operators).

Proof of Lemma 2. By Proposition 18 of Ref. [130],
1
2‖U − id‖� = sin(min{α,π/2}), wherein α denotes half
the angle of the shortest arc A, on the unit circle, that con-
tains every eigenvalue (eigenphase) of U. Let χ∗ ∈ R such
that eiχ∗ is the midpoint of A. (Since U has only finitely
many eigenphases, A does not encompass the unit cir-
cle, so A has endpoints and a midpoint.) By definition,
A = {

eiχ∗eiϕ : ϕ ∈ [−α,α]
}
. A has the endpoints θ± :=

eiχ∗e±iα . θ± are eigenphases of U. Otherwise, one could
obtain an arc shorter than A that contains every eigenphase
of U.

To prove Eq. (A7), we show that e(U) = α. Let −iH∗
denote the unique logarithm of e−iχ∗U such that every
eigenvalue of H∗ lies in (−π ,π ]. Since H∗ is Hermitian
and e−iH∗ = e−iχ∗U, e(U) � ‖H∗‖. Because every eigen-
value of U lies in A, every eigenvalue of e−iH∗ lies in the
arc A∗ := {

eiϕ : ϕ ∈ [−α,α]
}
, which one obtains by mul-

tiplying every point in A by e−iχ∗ . Consequently, every
eigenvalue of H∗ lies in [−α,α], so ‖H∗‖ � α. Hence,
e(U) � α.

For the sake of contradiction, suppose e(U) < α. Let
H denote any Hermitian operator that achieves the min-
imum in Eq. (A8). e−iH = e−iχU for some χ ∈ R, and
‖H‖ = e(U) < α. Since every eigenvalue of H lies in
[−‖H‖, ‖H‖], the arc AH := {

eiχ∗eiϕ : ϕ ∈ [−‖H‖, ‖H‖]
}

contains every eigenvalue of eiχe−iH = U. Having the
half-angle ‖H‖ < α, AH is shorter than A, a contradiction.
Therefore, e(U) = α.

We now prove Eq. (A9). Suppose α � π/2. Then A con-
tains a half-circle and thus has an endpoint θ ∈ {θ±} whose
real part is nonpositive: Re(θ) � 0. θ is an eigenphase of
U, so θ − 1 is an eigenvalue of U − 1. Hence,

1
2
‖U − id‖� = sin

(
min

{
α,
π

2

})
= 1 � |Re(θ)− 1|

= |Re(θ − 1)| � |θ − 1| � ‖U − 1‖.
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Now, suppose α < π/2. Then

1
2
‖U − id‖� = sin

(
min

{
α,
π

2

})
= sin(α)= ∣∣eiχ∗ sin(α)

∣∣

= 1
2

∣∣eiχ∗(eiα − e−iα)∣∣ = 1
2
|θ+−θ−|

= 1
2
|(θ+−1)− (θ−−1)|

� 1
2
|θ+−1| + 1

2
|θ−−1|

� ‖U − 1‖. (A11)

The second inequality follows because U − 1 has the
eigenvalues θ± − 1. �

APPENDIX B: MEASURES OF COMPLEXITY
AND POVM-EFFECT COMPLEXITY

We define the complexity (relative) entropy in terms of
POVM-effect complexity. This section’s main purpose is
to introduce general assumptions that define POVM-effect
complexity. Our setting’s generality enables one to define
the complexity (relative) entropy for a range of physical
systems, including qubits, qudits, and continuous-variable
systems.

1. Complexity of superoperators and unitaries

Using conservative assumptions, we define complex-
ity measures for superoperators and unitaries. We later
use these measures to construct measures of POVM-effect
complexity.

Definition 1 (Superoperator-complexity measure). Let
S denote a composition of N quantum subsystems: S =
S1S2 . . . SN . For every subset I ⊂ {1, 2, . . . , N }, let SI
denote the composition of the subsystems in {Si}i∈I .
A superoperator-complexity measure on S is a fam-
ily of functions CSI that map completely positive,
trace-nonincreasing maps to R+ ∪ {∞}, for all I ⊂
{1, 2, . . . , N }. The functions must have the following prop-
erties, for every I ⊂ {1, 2, . . . , N }:

(i) The identity operation has zero complexity:
CSI (idSI ) = 0.

(ii) No sequential composition of operations has a com-
plexity that exceeds the sum of the individual opera-
tions’ complexities: for any operations E1 and E2 on
SI , CSI (E2E1) � CSI (E1)+ CSI (E2).

(iii) No parallel composition of operations has a com-
plexity that exceeds the sum of the individual oper-
ations’ complexities: for any J disjoint from I , for
any operation E1 on SI , and for any operation E2 on
SJ , CSI SJ (E1 ⊗ E2) � CSI (E1)+ CSJ (E2).

For every operation E on any SI , we employ the short-
hand notation CS(E ) := CSI (E ). Accordingly, we denote a
superoperator-complexity measure by its function CS, for
convenience.

The following is a natural way to construct a
superoperator-complexity measure: Choose a set G of ele-
mentary operations. Define the complexity of an arbitrary
operation E as the minimum number of operations in G
that, under composition, effect E .

Definition 2 (Circuit-superoperator-complexity mea-
sure). Let S = S1S2 . . . SN denote a quantum system. We
employ the notation of Definition 1. For every subset
I ⊂ {1, 2, . . . , N }, let GSI denote an (arbitrary) set of com-
pletely positive, trace-nonincreasing maps such that idSI ∈
GSI and GSI ⊂ GSJ for all J ⊃ I . Denote the set GS by G .
A circuit-superoperator-complexity measure on S associ-
ated with G is a family of functions CG ,SI , for any I ⊂
{1, 2, . . . , N }, defined as

CG ,SI (E ) := min
{
r ∈ N : Er · · ·E2E1 = E ,

Ei ∈ GSI ∀i ∈ {1, 2, . . . , r}}. (B1)

We introduce three conventions. First, we denote a
circuit-superoperator-complexity measure by its function
CG ,S. Second, we designate the composition of a zero
number of operations on SI as the identity operation idSI .
Third, we set CSI (E ) = ∞ whenever no finite sequence of
operations from GSI implements an operation E exactly.

The following proposition confirms that every circuit-
complexity measure (Definition 2) is a superoperator-
complexity measure (Definition 1).

Proposition 4 (Compatibility of circuit-superopera-
tor complexity and general-superoperator complexity).
Define S and the gate set G as in Definition 2. Every
circuit-superoperator-complexity measure on S associated
with G is a superoperator-complexity measure.

Proof. We verify that every circuit-superoperator-
complexity measure CG ,S has the three properties in
Definition 1. Property (i) holds because, by definition,
idSI ∈ GSI ; and, by convention, idSI is the sequential com-
position of zero operations. Property (ii) automatically
characterizes every sequential composition that involves
an infinite-complexity operation. Now, we prove that prop-
erty (ii) characterizes finite-complexity operations E and
E ′ on SI . If the operations’ complexities are CSI (E ) =
r and CSI (E

′) = r′, we can decompose E and E ′ as
sequences of r and r′ operations in GSI , respectively. There-
fore, we can decompose E ′E as a sequence of r + r′
operations in GSI . Hence CSI (E

′E ) � r + r′ = CSI (E )+
CSI (E

′). Property (iii) follows as a special case of Prop-
erty (ii): one can express every operation E on SI as the
operation E ⊗ idSJ on SI SJ and vice versa. �
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Many complexity measures in the literature are defined
only for unitary operations. The following definition spe-
cializes Definition 1 to such situations.

Definition 3 (Unitary-complexity measure). A unitary-
complexity measure is a superoperator-complexity mea-
sure that assigns finite values only to unitary operations. A
unitary-complexity measure CS is called adjoint-invariant
if CS(U ) = CS(U †) for every unitary operation U on S.

Let U denote any unitary operator on HS, and let
U (·) := U(·)U†. We write CS(U) as a shorthand for
CS(U ), for convenience. Correspondingly, a unitary-
circuit-complexity measure is a unitary-complexity
measure that is also a circuit-complexity measure. Equiv-
alently, a unitary-circuit-complexity measure is a circuit-
complexity measure associated with a set of unitary gates.

2. Quantum state complexity

Here, we introduce state-complexity measures in gen-
eral, for completeness and for use in later appendices.

Definition 4 (Exact-state-complexity measure). Let
S denote a quantum system. Let CS denote any
superoperator-complexity measure; and ρ0, any state of S.
The exact-state-complexity measure with respect to CS and
ρ0 is

Cρ0
S (ρ) := inf

{
CS(E ) : E (ρ0) = ρ

}
. (B2)

An exact-state-complexity measure Cρ0
S is called an

exact-pure-state-complexity measure if ρ0 is pure and
if Cρ0

S assigns finite values only to pure states. Cρ0
S is

such a measure if, for instance, ρ0 is pure and CS is a
unitary-complexity measure.

Definition 5 (Approximate-state-complexity measure).
Let S denote a quantum system. Let CS denote any
superoperator-complexity measure; and ρ0, any state of
S. Let δ � 0. The δ-approximate-state-complexity measure
with respect to CS and ρ0 is

Cρ0, δ
S (ρ) := lim

ζ→0+
inf

{
CS(E ) :

1
2
‖E (ρ0)− ρ‖1 � δ + ζ

}
.

(B3)

The stabilization limζ→0+ in Eq. (B3) helps smooth
Cρ0, δ

S at unusual discontinuities in superoperator-
complexity measures. For instance, consider any set G0
of two-qubit unitary gates that is universal for quantum
computation. Let G denote the set of n-qubit unitaries real-
izable as finite sequences of gates in G0. G is closed under
composition. Let CG denote the unitary-circuit-complexity
measure associated with G (Definition 2). By construction,

the identity 1⊗n
2 has zero complexity, and every unitary

U ∈ G has unit complexity: CG (U) = 1. Any other unitary
has infinite complexity, since it can only be approximated
by a sequence of gates in G0—and thus by a unitary in
G [95]. Let |ψ0〉 denote any pure n-qubit state. The sta-
bilization ensures that Cψ0, 0

S (ψ) = 1 for all pure states
|ψ〉 	= |ψ0〉. Without the stabilization, every state |ψ〉 inac-
cessible from |ψ0〉 by any unitary in G would have an
infinite complexity: Cψ0, 0

S (ψ) = ∞.
As an immediate consequence of Eq. (B3), Cρ0,δ

S is right-
continuous in δ:

lim
ζ→0+

Cρ0,δ+ζ
S (ρ) = Cρ0,δ

S (ρ). (B4)

An approximate-state-complexity measure Cρ0,δ
S is

called an approximate-pure-state-complexity measure if ρ0

is pure and if Cρ0,0
S assigns finite values only to pure states.

Cρ0,δ
S is such a measure if, for instance, ρ0 is pure and CS is

a unitary-complexity measure.
The following proposition provides an alternative

expression for Eq. (B3). From this expression, we derive
a condition under which the stabilization in Eq. (B3)
becomes inconsequential.

Proposition 5 (Alternative expression for approxi-
mate-state-complexity measure). Let S denote a quantum
system. Let CS denote any superoperator-complexity mea-
sure; and ρ0, any state of S. Let δ � 0. It holds that

Cρ0,δ
S (ρ) = inf{r : dist1(ρ, Gr[ρ0]) � δ}, (B5)

where

Gr[ρ0] := {
E (ρ0) : CS(E ) � r

}
and

dist1(ρ, T) := inf
ρ′∈T

{
1
2
‖ρ − ρ ′‖1

}
, (B6)

and wherein T denotes any set of states.

We now show that, under simple conditions, we can
forgo the stabilization in the definition of the approximate-
state-complexity measure.

Corollary 1 (No stabilization of the approximate-state–
complexity measure required for compact gate sets). Con-
sider the setting in Proposition 5. Suppose that, for all
r � 0, the sets Gr[ρ0] are compact. Then

Cρ0,δ
S (ρ) = inf

{
CS(E ) :

1
2
‖E (ρ0)− ρ‖1 � δ

}
. (B7)

Furthermore, the sets Gr[ρ0] are compact if CS is a
circuit-complexity measure (Definition 2) associated with
a compact gate set GS.
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Proof of Proposition 5. Let ρ denote any state of S. We
show that the expressions in Eq. (B3) and (B5) equal

r∗ : = inf
{

r : ∀ ζ > 0, ∃ E such that

CS(E ) � r and
1
2
‖E (ρ0)− ρ‖ � δ + ζ

}
. (B8)

The infimum in Eq. (B5) equals r∗, since

inf
{
r : dist1

(
ρ, Gr[ρ0]

)
� δ

}

= inf
{
r : ∀ ζ > 0, ∃ ρ ′ ∈ Gr[ρ0]

such that
1
2
‖ρ − ρ ′‖1 � δ + ζ

}
= r∗. (B9)

Now, consider Cρ0,δ
S (ρ), as defined in Eq. (B3). We

show that Cρ0,δ
S (ρ) = r∗ by showing first that r∗ � Cρ0,δ

S (ρ)

and then that Cρ0,δ
S (ρ) � r∗. Consider any ζ , ζ ′ > 0. By

(B3), there exists an E such that CS(E ) � Cρ0,δ
S (ρ)+ ζ ′

and 1
2‖E (ρ0)− ρ‖1 � δ + ζ . Hence, r = Cρ0,δ

S (ρ)+ ζ ′ is
a candidate for the optimization in Eq. (B8), so

r∗ � Cρ0,δ
S (ρ)+ ζ ′. (B10)

Thus, r∗ � Cρ0,δ
S (ρ), since ζ ′ > 0 is arbitrary. By the infi-

mum in Eq. (B8), there exists an E and an r � r∗ + ζ ′ such
that CS(E ) � r and 1

2‖E (ρ0)− ρ‖1 � δ + ζ . Hence, r is
lower-bounded as

inf
{

CS(E ) :
1
2
‖E (ρ0)− ρ‖1 � δ + ζ

}
� r � r∗ + ζ ′.

(B11)

Thus, the infimum in Eq. (B11) lower-bounds r∗, since
ζ ′ > 0 is arbitrary. Consequently,

Cρ0,δ
S (ρ)

= lim
ζ→0+

inf
{

CS(E ) :
1
2
‖E (ρ0)− ρ‖1 � δ + ζ

}
� r∗.

(B12)

�

Proof of Corollary 1. Suppose that Gr[ρ0] is compact
for all r � 0. The infimum defining dist1(ρ, Gr[ρ0]), in Eq.
(B6), is achieved by some state in Gr[ρ0]. Thus,

dist1(ρ, Gr[ρ0]) = min
{

1
2
‖E (ρ0)− ρ‖1 : CS(E ) � r

}
.

(B13)

Substituting Eq. (B13) into Eq. (B5) yields Eq. (B7).

Now, suppose that CS is a circuit-complexity measure
(Definition 2) associated with a gate set GS. Assume that
GSI is compact for all I ⊂ {1, 2, . . . , N }. Consider the func-
tion F that maps every sequence (E1, . . . , Er) of gates in GS
to an action on ρ0, as follows:

F(E1, E2, . . . , Er) := (Er · · ·E2E1)(ρ0). (B14)

By definition, F is a map from (GS)
×r to Gr[ρ0]. F is

continuous, since it is a polynomial map. (GS)
×r is com-

pact, since the finite product of compact sets is compact.
Therefore, Gr[ρ0] is compact, since continuous functions
preserve compactness. �

3. POVM-effect complexity

A central ingredient in the complexity relative entropy’s
definition is a family {Mr} of sets of POVM effects. {Mr}
is a formal parameter that can accommodate any notion of
POVM-effect complexity. Each set Mr contains precisely
the POVM effects of complexities � r. An example of such
a family of sets is defined via Eq. (11).

Here, we present conservative assumptions about every
family {Mr} to ensure that it has properties necessary for
our construction of the complexity (relative) entropy.

Definition 6 (POVM-effect-complexity sets). Let S
denote a composition of N quantum subsystems: S =
S1S2 . . . SN . For every subset I ⊂ {1, 2, . . . , N }, let SI
denote the composition of the subsystems in {Si}i∈I . A
family of POVM-effect-complexity sets on HS is a family
{Mr

SI
}r∈R+ of sets of POVM effects, for each SI . Each Mr

SI
is a POVM-effect-complexity set. The family must satisfy
the following axioms, for every I ⊂ {1, 2, . . . , N }:

(i) The identity operator has zero complexity: 1SI ∈
M0

SI
.

(ii) For all r′ � r � 0, Mr
SI

⊂ Mr′
SI

.
(iii) For all r, r′ � 0 and for all J disjoint from I , Mr

SI
⊗

Mr′
SJ

⊂ Mr+r′
SI SJ

.

For convenience, we write {Mr
S} as shorthand for a

family {Mr
SI
}r,I .

4. POVM-effect-complexity sets from simple POVM
effects and a superoperator-complexity measure

A natural way to construct POVM-effect-complexity
sets is as follows: Designate a set of “simple,” zero-
complexity POVM effects. Define the complexity of an
effect Q as the minimum complexity of any superopera-
tor that maps a simple effect to Q. In the main text, we use
this procedure to construct the sets Mr in Eq. (11) from
single-qubit projectors and a circuit-complexity measure.

The conditions in Definition 6 imply that zero-
complexity effects must satisfy two conditions: (i) the
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identity operator is a zero-complexity effect. (ii) The par-
allel composition of two zero-complexity effects is a zero-
complexity effect. Any set of “simple” POVM effects must
satisfy these criteria, which we formalize in the following
definition.

Definition 7 (Simple POVM effects). Let S denote a
composition of N quantum subsystems: S = S1S2 . . . SN .
For every subset I ⊂ {1, 2, . . . , N }, let SI denote the com-
position of the subsystems in {Si}i∈I . Let {PSI } denote a
family of sets of POVM effects. The PSI are sets of simple
POVM effects if, for all I ⊂ {1, 2, . . . , N }, the following
conditions hold:

(i) PSI contains the identity operator: 1SI ∈ PSI .
(ii) PSI ⊗ PSJ ⊂ PSI SJ for all J disjoint from I .

For convenience, we denote a family {PSI } by its set PS.
We now construct POVM-effect-complexity sets from

simple POVM effects and a superoperator-complexity
measure.

Definition 8 (POVM-effect-complexity sets from simple
effects and a superoperator-complexity measure). Let S =
S1S2 . . . SN denote a quantum system as in Definition 7. Let
PS denote any set of simple POVM effects (Definition 7);
and CS, any superoperator-complexity measure (Definition
1). For all r � 0 and I ⊂ {1, 2, . . . , N }, we define

Mr
SI

(
PSI , CSI

)
:= {

E †(P) : P ∈ PSI , CSI (E ) � r
}
.

(B15)

Proposition 6. The sets Mr
SI

(
PSI , CSI

)
constructed in

Eq. (B15) define a family of POVM-effect-complexity sets
(Definition 6).

Proof. We write Mr
SI

= Mr
SI

(
PSI , CSI

)
for short. We ver-

ify that the sets Mr
SI

have the three properties in Definition
6. Property (i) holds because 1SI = id†

SI

(
1SI

)
, 1SI ∈ PSI

(Definition 7), and CSI

(
idSI

) = 0 (Definition 1). Property
(ii) holds because, for all r′ � r � 0 and for all opera-
tions E on SI , CSI (E ) � r implies CSI (E ) � r′. To show
that Property (iii) holds, we consider any POVM effects
Q1 ∈ Mr

SI
and Q2 ∈ Mr′

SJ
, with I and J disjoint. Q1 =

E †
1 (P1) for some effect P1 ∈ PSI and for some opera-

tion E1 satisfying CSI (E1) � r. Similarly, Q2 = E †
2 (P2) for

some effect P2 ∈ PSJ and for some operation E2 satisfy-
ing CSJ (E2) � r′. By Definition 7, P1 ⊗ P2 ∈ PSI SJ . By
Definition 1, CSI SJ (E1 ⊗ E2) � CSI (E1)+ CSJ (E2) � r +
r′. Thus, Q1 ⊗ Q2 = (

E1 ⊗ E2
)†(P1 ⊗ P2

) ∈ Mr+r′
SI SJ

. �

By Eq. (B15), every simple POVM effect is a zero-
complexity effect, since the identity process has zero
complexity. In general, the converse is false: not every

zero-complexity effect is a simple POVM effect. Indeed,
a nontrivial zero-complexity operation applied to a sim-
ple effect may yield a zero-complexity effect that is not
a simple effect. Let P denote a set of simple POVM
effects (Definition 7); and C, a superoperator-complexity
measure (Definition 1). Suppose that there exists a zero-
complexity operation E 	= id: C(E ) = 0. Suppose, further,
that E †(P) 	∈ P for some effect P ∈ P. Then Mr=0(P, C) �

P, since E †(P) ∈ Mr=0(P, C), by Eq. (B15). If id is the
unique zero-complexity operation—or, more generally, if
P is closed under (the adjoint of) every zero-complexity
operation—then Mr=0(P, C) = P. In particular, id is the
unique zero-complexity operation whenever C is a circuit-
complexity measure (Definition 2).

5. POVM-effect-complexity sets from a
POVM-effect-complexity measure

An alternative, equivalent formulation of a POVM-
effect-complexity set (Definition 6) arises from a complex-
ity measure on individual POVM effects. This formulation
has the advantage of using a primitive formally similar to a
superoperator-complexity measure (Definition 1). Conse-
quently, some readers may find POVM-effect-complexity
sets more intuitive in this formulation.

Definition 9 (POVM-effect-complexity measure). Let S
denote a composition of N quantum subsystems: S =
S1S2 . . . SN . For every subset I ⊂ {1, 2, . . . , N }, let SI
denote the composition of the subsystems in {Si}i∈I . A
POVM-effect-complexity measure on S is a family of func-
tions FSI that map POVM effects on SI to R+ ∪ {∞},
for all I ⊂ {1, 2, . . . , N }. The functions have the following
properties, for every I ⊂ {1, 2, . . . , N }:

(i) The identity effect has zero complexity:
FSI (1SI ) = 0.

(ii) No parallel composition of POVM effects has a
complexity greater than the sum of the individual
effects’ complexities: FSI SJ (Q1 ⊗ Q2) � FSI (Q1)+
FSJ (Q2) for all J disjoint from I .

For convenience, we denote a POVM-effect-complexity
measure by its function FS. Every POVM-effect-
complexity measure induces a family of POVM-effect-
complexity sets (Definition 6), as per the following
definition.

Definition 10 (POVM-effect-complexity sets from a
POVM-effect-complexity measure). Let S = S1S2 . . . SN
denote a quantum system; and FS, a POVM-effect-
complexity measure, as in Definition 9. A family of POVM-
effect-complexity sets on HS, associated with FS, is a fam-
ily {Mr

SI

(
FSI

)}r∈R+ of sets of POVM effects. Each Mr
SI

(
FSI

)
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denotes the set of POVM effects on SI of complexities � r:

Mr
SI

(
FSI

)
:= {

Q : FSI (Q) � r
}
. (B16)

One can straightforwardly check that the sets Mr
SI

(
FSI

)
in

Eq. (B16) satisfy the conditions of Definition 6.
We now construct a POVM-effect-complexity mea-

sure from simple POVM effects and a superoperator-
complexity measure, providing an alternative way to
define the sets Mr

SI

(
PSI , CSI

)
in Eq. (B15). Let S denote a

quantum system; and FS, a POVM-effect-complexity mea-
sure, as in Definition 9. Let PS denote a set of simple
POVM effects (Definition 7). The following prescription,
for all subsets I ⊂ {1, 2, . . . , N }, defines a POVM-effect-
complexity measure:

FSI (Q) := inf
{
CSI (E ) : P ∈ PSI , E †(P) = Q

}
. (B17)

Proposition 7. The sets FSI constructed in Eq. (B17)
define a POVM-effect-complexity measure.

Proof. We verify that the sets FSI have both the proper-
ties in Definition 9. Property (i) holds because CSI

(
idSI

) =
0 (Definition 1), 1SI ∈ PSI (Definition 7), and id†

SI

(
1SI

) =
1SI . To show that Property (ii) holds, we consider any
POVM effects Q1 on SI and Q2 on SJ , with I and J dis-
joint. Let P1 ∈ PSI , and let E1 denote an operation on
SI such that E †

1 (P1) = Q1. Similarly, let P2 ∈ PSJ , and
let E2 denote an operation on SJ such that E †

2 (P2) = Q2.
E1 ⊗ E2 is a candidate for the FSI SJ (Q1 ⊗ Q2) optimiza-
tion in Eq. (B17), since P1 ⊗ P2 ∈ PSI SJ (Definition 7)
and (E1 ⊗ E2)

†(P1 ⊗ P2) = Q1 ⊗ Q2. Hence, FSI SJ (Q1 ⊗
Q2) � CSI SJ (E1 ⊗ E2). Furthermore, CSI SJ (E1 ⊗ E2) �
CSI (E1)+ CSJ (E2) (Definition 1), so FSI SJ (Q1 ⊗ Q2) �
CSI (E1)+ CSJ (E2). We obtain FSI SJ (Q1 ⊗ Q2) � FSI (Q1)

+ FSJ (Q2) by taking the infimum of the last inequality with
respect to all candidates E1 and E2 for the FSI (Q1) and
FSJ (Q2) optimizations in Eq. (B17), respectively. �

A POVM-effect-complexity measure constructed as
in Eq. (B17), with a circuit-superoperator-complexity
measure (Definition 2), is called a circuit-POVM-effect-
complexity measure. The POVM-effect-complexity mea-
sure in Eq. (B17) induces, via Eq. (B16), the sets
Mr

SI

(
PSI , CSI

)
in Eq. (B15).

6. Examples of POVM-effect-complexity sets

Any set of simple POVM effects (Definition 7) and
any unitary-complexity measure (Definition 3) determine
a family of POVM-effect-complexity sets, as per Eq.
(B15). In this section, we provide natural examples of sim-
ple POVM effects and unitary-complexity measures on n
qubits.

a. Examples of simple POVM effects

Among the POVM effects that one can directly imple-
ment in a laboratory, local effects are often the most fea-
sible. The following sets of simple POVM effects contain
only tensor products.

(i) The set of tensor products of the single-qubit projec-
tors |0〉〈0| and 12. We use this choice throughout the
main text [see Eq. (10)], as is natural in the context
of erasure.

(ii) The set of tensor products of single-qubit projectors.
This choice is natural if one can easily perform any
single-qubit gate before implementing a projector
onto a single-qubit state, e.g., |0〉.

(iii) The set of tensor-product POVM effects. If perform-
ing nonlocal operations is hard, local operations are
a natural choice for simple effects. Tensor-product
POVM effects generalize tensor-product projectors.

Importantly, there exist POVM effects that one cannot
implement by first applying a unitary and then implement-
ing a tensor-product POVM effect. For instance, the two-
qubit effect 1

2 (|00〉〈00| + |01〉〈01| + |10〉〈10|) is a rank-3
operator, unlike any tensor-product two-qubit effect: oper-
ator rank is invariant under unitary transformation, so
the given effect is not unitarily equivalent to any tensor-
product effect.

b. Examples of unitary-complexity measures

A natural unitary-complexity measure on n qubits is the
circuit complexity associated with a two-qubit gate set G
(Definition 2). Depending on one’s experimental capabili-
ties, one can consider circuits with all-to-all connectivity
(any gate in G can act on any two qubits); geometric
locality (any gate in G can act on only two neighboring
qubits); or intermediate connectivity (some gates in G can
act on any two qubits, and other gates can act on only two
neighboring qubits). Convenient choices for G include the
following:

(i) The set of two-qubit gates: G = SU(4). This choice
is widespread in studies of random circuits [55,131].
For instance, this choice has elucidated the linear
growth, with time, of exact circuit complexity under
random circuits [18,19].

(ii) The following Clifford gates: Hadamard, S, and
CNOT gates. This set generates quantum circuits that
can be efficiently simulated classically [132]. The
set is not universal, and almost all unitaries have
infinite complexities with respect to the set.

(iii) Any finite, universal set of two-qubit gates, such
as the Clifford + T gate set. This set can approx-
imate every unitary arbitrarily well with a finite-
complexity unitary [95]. In this setting, the circuit

010346-25



ANTHONY MUNSON et al. PRX QUANTUM 6, 010346 (2025)

complexity grows algebraically under random quan-
tum circuits with gates drawn from a finite gate set
[17,55,56].

Our definition of unitary complexity accommodates
other notions of complexity, such as the Nielsen complex-
ity [124–127]. Another example is the minimum T-count
of any Clifford + T circuit that approximates a given
unitary. (In the latter example, different gates contribute
different amounts of complexity. Each T gate contributes
one unit of complexity; and each Clifford gate, zero units.

APPENDIX C: HYPOTHESIS-TESTING
(RELATIVE) ENTROPY

In a hypothesis test, one receives either ρ or σ , and
guesses which state one received. In the most general strat-
egy to distinguish ρ and σ , one performs a two-outcome
measurement {Q,1− Q}. One guesses ρ if Q obtains
and guesses σ otherwise. Suppose that one must, if the
state is ρ, guess ρ with a probability � η ∈ (0, 1]. The
minimum probability of wrongly guessing ρ defines the
hypothesis-testing relative entropy.

Definition 11 (Hypothesis-testing relative entropy). Let
ρ denote any subnormalized state, and � any positive-
semidefinite operator, that act on the same Hilbert space.
Let η ∈ (0, tr(ρ)]. The hypothesis-testing relative entropy
is defined as [82,83,86]

Dη
H(ρ ‖�) := − log

⎛
⎝ min

0�Q�1
tr(Qρ)�η

{
tr(Q�)
η

}⎞
⎠. (C1)

In a hypothesis test, the least probability of erroneously
rejecting σ , using a strategy that successfully accepts ρ
with a probability � η, is η exp (−Dη

H(ρ ‖ σ)). Every opti-
mal POVM effect Q satisfies tr(Qρ) = η. If any such Q
violated this equation, one could achieve a better objective
value with Q′ := ηQ/ tr(Qρ) � Q. Consequently, if � =
ρ, then Dη

H(ρ ‖�) = 0. In this case, every Q satisfying
tr(Qρ) = η is optimal.

There always exists an optimal effect for the Dη
H opti-

mization, since the domain of optimization is compact.
This fact justifies the use of a minimum, instead of an
infimum, in Eq. (C1).

Definition 12 (Hypothesis-testing entropy). Let ρ

denote any subnormalized state. Let η ∈ (0, tr(ρ)]. The
hypothesis-testing entropy is defined as [82]

H η
H(ρ) := −Dη

H(ρ ‖1) = log

⎛
⎝ min

0�Q�1
tr(Qρ)�η

{
tr(Q)
η

}⎞
⎠. (C2)

The hypothesis-testing entropy and relative entropy are
related to smooth entropies, including the min- and max-
relative entropies [79,82]. The smooth entropies quantify
the optimal efficiencies of operational tasks performed in
the absence of complexity restrictions. Such tasks feature
finitely many copies of a quantum state or random variable,
as well as finite failure probabilities.

One can express the hypothesis-testing relative entropy
(C1) as a semidefinite program. The dual problem takes the
form [82]

Dη
H(ρ ‖�) = − log

⎛
⎝ max

X �0,μ�0
μρ��+X

{
μ− tr(X )

η

}⎞
⎠. (C3)

We now reformulate the hypothesis-testing relative
entropy. The rewriting reveals the entropy’s formal simi-
larity to the complexity relative entropy (12).

Proposition 8 (Alternative expression for hypothe-
sis-testing relative entropy). Let ρ denote any subnor-
malized state; and �, any positive-semidefinite operator.
Let η ∈ (0, tr(ρ)]. The hypothesis-testing relative entropy
obeys

Dη
H(ρ ‖�) = −log

⎛
⎝ inf

0�Q�1
tr(Qρ)�η

{
tr(Q�)
tr(Qρ)

}⎞
⎠. (C4)

Without loss of generality, we can assume that every
candidate effect Q for the optimization satisfies ‖Q‖ = 1.
If a candidate Q did not, we could replace Q with a can-
didate Q′ := Q/‖Q‖ � Q that achieves the same objective
value as Q.

Proof. Let Q denote any POVM effect such that
tr(Qρ) � η. Let Q′ := ηQ/ tr(Qρ). By definition, Q′ sat-
isfies tr(Q′ρ) = η. Q and Q′ are candidates for the Dη

H
optimization in Eq. (C1) and achieve the same objective
value:

tr(Q�)
tr(Qρ)

= tr
(
Q′�

)

tr(Q′ρ)
. (C5)

Consequently, the set of candidate objective values in
Eq. (C4) is unaltered if we restrict to POVM effects Q′
satisfying tr(Q′ρ) = η:

{
tr(Q�)
tr(Qρ)

: 0 � Q � 1, tr(Qρ) � η

}

=
{

tr(Q′�)
tr(Q′ρ)

: 0 � Q′ � 1, tr
(
Q′ρ

) = η

}
. (C6)
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Therefore,

inf
0�Q�1

tr(Qρ)�η

{
tr(Q�)
tr(Qρ)

}
= inf

0�Q′�1

tr(Q′ρ)=η

{
tr
(
Q′�

)

tr(Q′ρ)

}

= inf
0�Q′�1

tr(Q′ρ)=η

{
tr
(
Q′�

)

η

}
. (C7)

The second equality follows because tr(Q′ρ) = η for every
Q′ in the second infimum’s domain.

Consider, again, any effect Q satisfying tr(Qρ) � η

and the effect Q′ := ηQ/ tr(Qρ). Clearly Q′ � Q, so
tr(Q′�)/η � tr(Q�)/η. Hence, the final infimum in Eq.
(C7) does not decrease if we extend its domain to all Q
satisfying tr(Qρ) � η:

inf
0�Q′�1

tr(Q′ρ)=η

{
tr
(
Q′�

)

η

}
= inf

0�Q�1
tr(Qρ)�η

{
tr(Q�)
η

}
. (C8)

Finally, the second infimum in Eq. (C8) is a minimum,
since the infimum’s domain is compact. Hence,

inf
0�Q�1

tr(Qρ)�η

{
tr(Q�)
η

}
= min

0�Q�1
tr(Qρ)�η

{
tr(Q�)
η

}
= e−DηH(ρ ‖�).

(C9)

The second equality follows from Definition 11. Chain-
ing together Eqs. (C7), (C8), and (C9) yields an equality
equivalent to Eq. (C4). �

APPENDIX D: COMPLEXITY (RELATIVE)
ENTROPY AND ITS VARIANTS

Imagine a hypothesis test performed by an observer able
to render only limited-complexity measurement effects.
The hypothesis-testing relative entropy is ill-suited for
such a test: the optimization in Eq. (C1) is appropriate
only for an observer who can render all POVM effects.
In Appendix D 1, we introduce the complexity (relative)
entropy as a hypothesis-testing (relative) entropy tailored
for the complexity-limited observer. In the optimiza-
tion defining the complexity (relative) entropy, candidate
POVM effects cannot exceed a given complexity r � 0.
Appendix D 2 details the complexity (relative) entropy’s
elementary properties. In Appendix D 3, we apply the
complexity relative entropy to hypothesis testing with
complexity limitations. In Appendix D 4, we bound the
complexity (relative) entropy using state-complexity mea-
sures. Appendix D 5 mainly concerns a variant of the
complexity (relative) entropy, the reduced complexity (rel-
ative) entropy. The reduced complexity entropy features
in our data-compression results and appears in Ref. [30] as

“the complexity entropy.” Last, in Appendix D 6, we define
the complexity conditional entropy and study some of its
elementary properties. In the following, {Mr} denotes any
family of POVM-effect-complexity sets (Definition 6). The
complexity (relative) entropy and its variants are defined
with respect to this set, unless further specified.

1. Definition of the complexity (relative) entropy

Definition 13 (Complexity relative entropy). Let ρ

denote any subnormalized state; and �, any positive-
semidefinite operator. Let r � 0 and η ∈ (0, tr(ρ)]. Here,
ρ, �, and every Q ∈ Mr act on the same Hilbert space. The
complexity-restricted hypothesis-testing relative entropy,
or simply the complexity relative entropy, is

Dr, η
H (ρ ‖�) := − log

⎛
⎝ inf

Q∈Mr

tr(Qρ)�η

{
tr(Q�)
tr(Qρ)

}⎞
⎠. (D1)

The denominator tr(Qρ) is a normalization factor ensur-
ing that the complexity (relative) entropy has some desired
properties. First, the complexity relative entropy satisfies
Dr, η

H (ρ ‖ ρ) = 0 (Proposition 9). Second, if ρ acts on a
Hilbert space of dimensionality d, the complexity entropy
assumes values in the range [0, log(d)] (Proposition 10).
The hypothesis-testing relative entropy is the same with a
denominator tr(Qρ) [as in Eq. (C4)] or η [as in Eq. (C1)].
In contrast, the complexity relative entropy might increase
if we replace tr(Qρ) with η in Eq. (D1): it may be impos-
sible to find a Q ∈ Mr such that tr(Qρ) = η [or such that
tr(Qρ) approximates η arbitrarily well]. This is typically
the case, for instance, for a family of sets that contains only
projectors; such a family is defined by Eq. (11).

Definition 14 (Complexity entropy). Let ρ denote any
subnormalized state. Let r � 0 and η ∈ (0, tr(ρ)]. The
complexity-restricted hypothesis-testing entropy, or simply
the complexity entropy, is

H r, η
H (ρ) := −Dr, η

H (ρ ‖1) = log

⎛
⎝ inf

Q∈Mr

tr(Qρ)�η

{
tr(Q)

tr(Qρ)

}⎞
⎠.

(D2)

The complexity entropy measures how well one can
distinguish ρ from the maximally mixed state, using a
limited-complexity measurement effect. Indeed, if ρ acts
on a Hilbert space of dimensionality d, then H r, η

H (ρ) =
log(d)− Dr, η

H (ρ ‖π). The π := 1/d denotes the maxi-
mally mixed state. Two special cases offer insight. First,
H r, η

H (ρ) = 0 if ρ is pure and ρ ∈ Mr. Second, H r, η
H (ρ) =

log(d) if ρ is normalized and 1 ∈ Mr is the only candidate
for the H r, η

H (ρ) optimization.
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The complexity entropy is analogous to the strong com-
plexity of Ref. [17]. Compared to the strong complex-
ity, the complexity entropy quantifies distinguishability in
terms of a hypothesis test, rather than a modified trace dis-
tance. Also, the complexity entropy bears a meaningful
interpretation for mixed states.

2. Elementary properties of the complexity (relative)
entropy

The complexity (relative) entropy possesses several
basic properties.

Proposition 9 (Vanishing complexity relative entropy).
Let ρ denote any subnormalized state. Let r � 0 and η ∈
(0, tr(ρ)]. It holds that

Dr, η
H (ρ ‖ ρ) = 0. (D3)

Proof. Every candidate effect Q ∈ Mr for the optimiza-
tion in Eq. (D1), including 1 ∈ Mr=0 ⊂ Mr, achieves the
objective value tr(Qρ)/ tr(Qρ) = 1. Hence, Dr, η

H (ρ ‖ ρ) =
log(1) = 0. �

In general, the converse is false: there may exist a state
σ 	= ρ such that Dr, η

H (ρ ‖ σ) = 0. This situation arises if
the measurement effects in Mr are too crude to distinguish
ρ from σ . For instance, consider the sets Mr defined in Eq.
(11) for n qubits, with respect to the set of two-qubit gates.
Let ρ = |1n〉〈1n|. For any η ∈ (0, 1], the only effect Q ∈
Mr=0 satisfying tr(Qρ) � η is Q = 1. Therefore, trivially,
Dr=0, η

H (ρ ‖ σ) = 0 for all σ .
The complexity relative entropy Dr, η

H (ρ ‖�) lies within
a fixed range dependent on only tr(ρ) and the eigenvalues
of �. The range takes a simple form if ρ is normalized and
� is positive definite.

Proposition 10 (General bounds). Let ρ denote any
subnormalized state, and � any positive-semidefinite oper-
ator, that act on a Hilbert space of dimensionality d. Let
r � 0 and η ∈ (0, tr(ρ)]. It holds that

Dr, η
H (ρ ‖�) � − log (tr(�))+ log (tr(ρ)). (D4a)

Furthermore, if � is positive definite (has full rank),

Dr, η
H (ρ ‖�) � log

(‖�−1‖)+ log (tr(ρ)). (D4b)

In particular,

− log (tr(ρ)) � H r, η
H (ρ) � log(d)− log (tr(ρ)). (D5)

Consequently, if ρ is normalized and � is positive definite,

− log (tr(�)) � Dr, η
H (ρ ‖�) � log

(‖�−1‖), (D6a)

and 0 � H r, η
H (ρ) � log(d). (D6b)

Equation (D4a) implies that Dr, η
H (ρ ‖ σ) � 0 for normal-

ized states ρ and σ .

Proof. Equation (D4a) follows because 1 ∈ Mr is a can-
didate effect for the Dr, η

H (ρ ‖�) optimization. To prove
Eq. (D4b), let Q ∈ Mr denote any candidate for the
Dr, η

H (ρ ‖�) optimization. If � is positive definite, � �
‖�−1‖−11, wherein ‖�−1‖−1 is the smallest eigenvalue
of �. Furthermore, ρ � tr(ρ)1, since tr(ρ) � 1. Thus,
tr(Q�) � ‖�−1‖−1 tr(Q), and tr(Qρ) � tr(ρ) tr(Q). These
two inequalities, together, imply that

tr(Q�)
tr(Qρ)

� ‖�−1‖−1 tr(Q)
tr(ρ) tr(Q)

= (‖�−1‖ tr(ρ))−1. (D7)

Therefore, (‖�−1‖ tr(ρ))−1 lower-bounds the objective
value tr(Q�)/ tr(Qρ) of every candidate effect Q. By the
definition of an infimum,

(‖�−1‖ tr(ρ))−1 � inf
Q∈Mr

tr(Qρ)�η

{
tr(Q�)
tr(Qρ)

}
= e−Dr, η

H (ρ ‖�),

(D8)

which is equivalent to Eq. (D4b). One obtains Eq. (D5) by
setting � = 1 in Eqs. (D4a) and (D4b). �

The complexity relative entropy never exceeds the
hypothesis-testing relative entropy.

Proposition 11 (Upper bound by hypothesis-testing rel-
ative entropy). Let ρ denote any subnormalized state; and
�, any positive-semidefinite operator. Let r � 0 and η ∈
(0, tr(ρ)]. It holds that

Dr, η
H (ρ ‖�) � Dη

H(ρ ‖�) and H r, η
H (ρ) � H η

H(ρ).
(D9)

Proof. The Dη
H(ρ ‖�) optimization ranges over all

POVM effects, while the Dr, η
H (ρ ‖�) optimization ranges

over only effects in Mr. �

The greater an agent’s computational power (the greater
the r), the less mixed ρ appears [the less H r, η

H (ρ) is].
Likewise, the greater an agent’s error intolerance (the
greater the η), the more mixed ρ appears [the greater
H r, η

H (ρ) is]. Consequently, the complexity entropy mono-
tonically decreases as r increases and monotonically
increases as η increases. The complexity entropy inherits
its monotonicity in η from the hypothesis-testing entropy.

Proposition 12 (Monotonicity in r and η). Let ρ denote
any subnormalized state; and �, any positive-semidefinite
operator. Let r � 0 and η ∈ (0, tr(ρ)].
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(i) For all r′ � r, Dr′, η
H (ρ ‖�) � Dr, η

H (ρ ‖�), and
H r′, η

H (ρ) � H r, η
H (ρ).

(ii) For all η′ ∈ (0, η], Dr, η′
H (ρ ‖�) � Dr, η

H (ρ ‖�), and
H r, η′

H (ρ) � H r, η
H (ρ).

Proof. The monotonicity in r follows because Mr ⊂
Mr′ : every candidate Q ∈ Mr for the Dr, η

H (ρ ‖�) optimiza-
tion belongs to Mr′ and is therefore a candidate for the
Dr′, η

H (ρ ‖�) optimization. The monotonicity in η follows
because every candidate Q for the Dr, η

H (ρ ‖�) optimiza-
tion satisfies tr(Qρ) � η � η′ and is therefore a candidate
for the Dr, η′

H (ρ ‖�) optimization. �

Like standard relative entropies, the complexity relative
entropy enjoys a scaling property in its second argument.

Proposition 13 (Scaling property in the second argu-
ment). Let ρ denote any subnormalized state; and �, any
positive-semidefinite operator. Let r � 0, η ∈ (0, tr(ρ)],
and a > 0. It holds that

Dr, η
H (ρ ‖ a�) = Dr, η

H (ρ ‖�)− log(a). (D10)

Proof. The equality holds because log(a) factorizes out
of the optimizer in Eq. (D1). �

The complexity (relative) entropy inverts (preserves) the
partial order of positive-semidefinite operators.

Proposition 14 (Monotonicity under operator ordering).
Let ρ and ρ ′ � ρ denote any subnormalized states. Let
� and �′ � � denote any positive-semidefinite operators.
Let r � 0 and η ∈ (0, tr(ρ)]. It holds that

Dr, η
H (ρ ‖�) � Dr, η

H (ρ ′ ‖�′) (D11a)

and H r, η
H (ρ) � H r, η

H (ρ ′). (D11b)

Proof. For every POVM effect Q, tr(Qρ) � tr(Qρ ′),
and tr(Q�) � tr(Q�′). Therefore,

e−Dr, η
H (ρ ‖�) = inf

Q∈Mr

tr(Qρ)�η

{
tr(Q�)
tr(Qρ)

}
� inf

Q∈Mr

tr(Qρ′)�η

{
tr
(
Q�′)

tr(Qρ ′)

}

= e−Dr, η
H (ρ′ ‖�′). (D12)

One obtains Eq. (D11b) by setting � = �′ = 1 in Eq.
(D11a). �

For tensor-product states, the complexity entropy has a
property similar to the von Neumann entropy’s subadditiv-
ity.

Proposition 15 (Subadditivity for tensor-product states).
Let S and S′ denote distinct quantum systems. Let ρS and
ρ ′

S′ denote any subnormalized states, and let �S and �′
S′

denote any positive-semidefinite operators. Let r, r′ � 0,
η ∈ (0, tr(ρ)], and η′ ∈ (0, tr(ρ ′)]. It holds that

Dr+r′, ηη′
H (ρ ⊗ ρ ′ ‖� ⊗ �′) � Dr, η

H (ρ ‖�)+ Dr′, η′
H (ρ ′ ‖�′)

(D13a)

and H r+r′, ηη′
H (ρ ⊗ ρ ′) � H r, η

H (ρ)+ H r′, η′
H (ρ ′). (D13b)

A consequence of Proposition 15 is, ancillas cannot
decrease the complexity relative entropy. For all subnor-
malized states ρ and σ defined on the same Hilbert space,
and for all subnormalized states τ ,

Dr, η
H (ρ ⊗ τ ‖ σ ⊗ τ) � Dr, η

H (ρ ‖ σ). (D14)

Inequality (D14) follows from setting r′ = 0 and η′ = 1 in
Eq. (D13a) and applying Proposition 9

[
Dr′, η′

H (τ ‖ τ) = 0
]
.

Inequality (D14) is compatible with observations about
the power of the one-clean-qubit computational model
(DQC1) [133] and about how tossing an extra pure qubit
into a black hole is expected to decrease the black hole’s
complexity [3,4].

Proof of Proposition 15. Consider any ζ , ζ ′ > 0. By the
definitions of Dr, η

H (ρ ‖�) and Dr′, η′
H (ρ ′ ‖�′), there exist

Q ∈ Mr
S, with tr(Qρ) � η, and Q′ ∈ Mr′

S′ , with tr(Q′ρ ′) �
η′, such that

tr(Q�)
tr(Qρ)

� e−Dr, η
H (ρ ‖�) + ζ and

tr
(
Q′�′)

tr(Q′ρ ′)

� e−Dr′ , η′
H (ρ′ ‖�′) + ζ ′. (D15)

By Definition 6, Mr
S ⊗ Mr′

S′ ⊆ Mr+r′
SS′ , so Q ⊗ Q′ ∈ Mr+r′

SS′ .
Moreover,

tr
(
[Q ⊗ Q′] [ρ ⊗ ρ ′]

) = tr(Qρ) tr(Q′ρ ′) � ηη′. (D16)

Therefore, Q ⊗ Q′ is a candidate for the Dr+r′, ηη′
H (ρ ⊗

ρ ′ ‖� ⊗ �′) optimization. Consequently,

e−Dr+r′ , ηη′
H (ρ⊗ρ′ ‖�⊗�′) � tr(Q�) tr

(
Q′�′)

tr(Qρ) tr(Q′ρ ′)

�
(

e−Dr, η
H (ρ ‖�) + ζ

)(
e−Dr′ , η′

H (ρ′ ‖�′) + ζ ′
)

, (D17)

which implies Eq. (D13a), since ζ and ζ ′ are arbitrary. One
obtains Eq. (D13b) by setting � = 1S and �′ = 1S′ in Eq.
(D13a). �
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The complexity relative entropy never increases under
any partial trace.

Proposition 16 (Monotonicity under partial traces).
Let A and B denote distinct quantum systems. Let ρAB
denote any subnormalized quantum state of AB. Let �AB
denote any positive-semidefinite operator. Let r � 0 and
η ∈ (0, tr(ρ)]. It holds that

Dr, η
H (ρAB ‖�AB) � Dr, η

H (ρA ‖�A), (D18)

wherein ρA := trB(ρAB) and �A := trB(�AB). Furthermore,

H r, η
H (ρAB) � H r, η

H (ρA)+ log(dB). (D19)

Proof. Consider any ζ > 0. There exists a QA ∈
Mr

A such that tr(QAρA) � η and tr(QA�A)/ tr(QAρA) �
exp (− Dr, η

H (ρA ‖�A))+ ζ . By Properties (i) and (iii)
of Definition 6, Q̃AB := QA ⊗ 1B ∈ Mr

AB. Moreover,
tr(Q̃ABρAB) = tr(QAρA) � η. Therefore, Q̃AB is a candidate
for the Dr, η

H (ρAB ‖�AB) optimization. Consequently,

e−Dr, η
H (ρAB ‖�AB) �

tr
(

Q̃AB�AB

)

tr
(

Q̃ABρAB

) = tr(QA�A)

tr(QAρA)

� e−Dr, η
H (ρA ‖�A) + ζ , (D20)

which implies (D18), since ζ is arbitrary. Equation (D19)
follows from applying first Eq. (D18) and then Proposition
13, to get

H r, η
H (ρAB) = −Dr, η

H (ρAB ‖1AB) � −Dr, η
H (ρA ‖ dB1A)

= H r, η
H (ρA)+ log(dB). (D21)

�

We can bound the complexity (relative) entropy in some
cases where its argument undergoes a limited-complexity
unitary.

Proposition 17 (Unitary operations on arguments). Let
ρ denote any subnormalized state; and �, any positive-
semidefinite operator. Let P denote any set of simple
POVM effects (Definition 7) and C any adjoint-invariant
unitary-complexity measure (Definition 3). Let {Mr =
Mr(P, C)} denote the family of POVM-effect-complexity
sets defined by Eq. (B15). Let r, r′ � 0 and η ∈ (0, tr(ρ)].
Let U denote any unitary satisfying C(U) � r′. It holds that

Dr+r′, η
H (UρU† ‖U�U†) � Dr, η

H (ρ ‖�) (D22a)

and H r+r′, η
H (UρU†) � H r, η

H (ρ). (D22b)

Proof. Consider any ζ > 0. There exists a Q ∈
Mr such that tr(Qρ) � η and tr(Q�)/ tr(Qρ) � exp (−
Dr, η

H (ρ ‖�))+ ζ . Q = U†
0PU0 for some effect P ∈ P

and for some unitary U0 satisfying C(U0) � r. Let
Q′ := UQU† = (U0U†)†P(U0U†). By Definition 1 and
by the adjoint invariance of C, C(U0U†) � C(U0)+
C(U†) = C(U0)+ C(U) � r + r′, so Q′ ∈ Mr+r′ . More-
over, tr(Q′[UρU†]) = tr(Qρ) � η. Therefore, Q′ is a can-
didate for the Dr+r′, η

H (UρU† ‖U�U†) optimization, so

e−Dr+r′ , η
H (UρU† ‖U�U†) � tr

(
Q′[U�U†

])

tr
(
Q′[UρU†

]) = tr(Q�)
tr(Qρ)

� e−Dr, η
H (ρ ‖�) + ζ , (D23)

which implies Eq. (D22a), since ζ is arbitrary. �

For composite systems, one can bound the complexity
(relative) entropy in terms of hypothesis-testing (relative)
entropies on each subsystem, if Mr contains only tensor-
product POVM effects. In most cases, Mr contains nonlocal
effects for all r > 0; in such cases, only Mr=0 may con-
sist solely of tensor-product effects. Importantly, the set
Mr=0 defined in Eq. (10), for n qubits, contains only
tensor-product effects.

Proposition 18 (Upper bound by hypothesis-testing rel-
ative entropies of subsystems). Let S denote a composi-
tion of N quantum subsystems: S = S1S2 . . . SN . Let ρS
denote any subnormalized state. For all i = 1, 2, . . . , N , let
�Si denote any positive-semidefinite operator. Let �S :=⊗N

i=1 �Si . Let r � 0 and η ∈ (0, tr(ρS)]. Suppose that Mr
S

contains only tensor-product POVM effects: every QS ∈
Mr

S is of the form
⊗N

i=1 QSi . Each QSi is an effect on Si.
It holds that

Dr, η
H (ρS ‖�S) �

N∑
i=1

Dη
H(ρSi ‖�Si) (D24a)

and H r, η
H (ρS) �

N∑
i=1

H η
H(ρSi). (D24b)

Proof. Consider any ζ > 0. There exists a QS =⊗N
i=1 QSi ∈ Mr

S, with each QSi an effect on Si,
such that tr(QSρS) � η and tr(QS�S)/ tr(QSρS) � exp
(− Dr,η

H (ρS ‖�S))+ ζ . For all i = 1, 2, . . . , N , let Q(i)
S :=(

1S1 ⊗ · · · ⊗ 1Si−1

)⊗ QSi ⊗
(
1Si+1 ⊗ · · · ⊗ 1SN

)
. For all

i, Q(i)
S � QS, since 1Sj � QSj for all j 	= i; consequently,

tr
(
QSi ρSi

) = tr
(
Q(i)

S ρS
)
� tr(QS ρS) � η. Thus, for all i,

QSi is a candidate for the Dη
H(ρSi ‖�Si) optimization, so
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exp (− Dη
H(ρSi ‖�Si)) � tr

(
QSi�Si

)
. Hence,

e−
∑N

i=1 DηH(ρSi ‖�Si ) �
N∏

i=1

tr
(
QSi�Si

)

tr
(
QSiρSi

) �
N∏

i=1

tr
(
QSi�Si

)

tr(QSρS)

= tr(QS�S)

tr(QSρS)
� e−Dr, η

H (ρS ‖�S) + ζ ,

(D25)

which implies Eq. (D24a), since ζ is arbitrary. �

3. Complexity relative entropy and hypothesis testing

We prove Proposition 1 of the main text, quantifying the
type-I and type-II errors of a hypothesis test that involves
limited-complexity measurement effects.

Proposition 19 (Hypothesis testing with complexity lim-
itations). Let ρ and σ denote any quantum states. Let
r � 0, η ∈ (0, 1], and δ ∈ (0, 1]. The following statements
are equivalent:

(i) For all ζ > 0, there exist a Q ∈ Mr and a q ∈ [η, 1]
such that tr([qQ]ρ) = η and tr([qQ]σ) � δ + ζ .

(ii) It holds that

Dr, η
H (ρ ‖ σ) � − log

(
δ

η

)
. (D26)

Consequently, there exist a Q ∈ Mr and a q ∈ (0, 1] such
that tr([qQ]ρ) = η and tr([qQ]σ) < δ if and only if

Dr, η
H (ρ ‖ σ) > − log

(
δ

η

)
. (D27)

Corollary 2. Let r � 0. If Mr is compact, then state-
ments (i) and (ii) in Proposition 19 are equivalent to the
following:

(i) There exist a Q ∈ Mr and a q ∈ [η, 1] such that
tr([qQ]ρ) = η and tr([qQ]σ) � δ.

In particular, suppose that P is a set of simple POVM
effects (Definition 7) that is compact, and suppose that CG

is a circuit-superoperator-complexity measure (Definition
2) associated with a compact gate set G . Then Mr(P, CG )

(Definition 8) is compact.

In particular, the sets Mr defined in Eq. (11) are compact.

Proof. To prove the first part of the proposition, con-
sider any ζ > 0. Suppose there exist a Q ∈ Mr and a
q ∈ [η, 1] such that tr([qQ]ρ) = η and tr([qQ]σ) � δ + ζ .

Then tr(Qρ) � tr([qQ]ρ) = η, and

e−Dr, η
H (ρ ‖ σ) � tr(Qσ)

tr(Qρ)
= tr([qQ]σ)

tr([qQ]ρ)
� δ + ζ

η
. (D28)

Therefore, e−Dr, η
H (ρ ‖ σ) � δ/η, since ζ is arbitrary. Con-

versely, suppose that exp (− Dr, η
H (ρ ‖ σ)) � δ/η. Con-

sider again any ζ > 0. There exists a Q ∈ Mr such
that tr(Qρ) � η and tr(Qσ)/ tr(Qρ) � (δ + ζ )/η. Let
q := η/ tr(Qρ). q ∈ [η, 1], since η � tr(Qρ) � 1. Then
tr([qQ]ρ) = η, and

tr([qQ]σ) = tr([qQ]ρ) · tr(Qσ)
tr(Qρ)

� tr([qQ]ρ) · δ + ζ

η

= δ + ζ . (D29)

We now prove the second part of the proposition. Suppose
there exist a Q ∈ Mr and a q ∈ (0, 1] such that tr([qQ]ρ) =
η and tr([qQ]σ) < δ. Let δ′ := tr([qQ]σ) < δ. Q, q,
and δ′ satisfy the conditions equivalent to Eq. (D26),
so exp (− Dr, η

H (ρ ‖ σ)) � δ′/η < δ/η. Conversely, sup-
pose that exp (− Dr, η

H (ρ ‖ σ)) < δ/η. Let δ′′ := η exp (−
Dr, η

H (ρ ‖ σ)) < δ. Then Dr, η
H (ρ ‖ σ) � − log(δ′′/η), as in

Eq. (D26), so there exist Q ∈ Mr and q ∈ (0, 1] such
that tr([qQ]ρ) = η and tr([qQ]σ) � δ′′ + ζ . By consider-
ing ζ sufficiently small such that δ′′ + ζ < δ, one obtains
tr([qQ]σ) < δ. �

Proof of Corollary 2. The implication (iii) ⇒ (i) is
straightforward; we need to show that (i) ⇒ (iii). Assume
(i). Consider the continuous functions f , g : [η, 1] × Mr →
[0, 1] defined as f (q, Q) := tr([qQ]ρ) and g(q, Q) :=
tr([qQ]σ). Let A denote the preimage of η under f : A =
f −1({η}). A is nonempty, since, by assumption, (i) holds.
A is closed, since f is continuous and {η} is closed. There-
fore, A is compact, being a closed subspace of the compact
set [η, 1] × Mr. Let

ν := inf{g(A)} = inf{tr([qQ]σ) : (q, Q) ∈ A}. (D30)

g(A) is compact, since it is the image of a compact set
under a continuous function. Therefore, the infimum is
attained, and there exists a (q, Q) ∈ A such that g(q, Q) =
ν. Since (i) holds, ν � δ + ζ for all ζ > 0; hence, ν � δ.
Thus, there exists (q, Q) ∈ A such that g(q, Q) � δ, so (iii)
holds.

Finally, suppose that P and G are compact. Consider the
continuous function h(P, E1, . . . , Er) := (E †

1 · · ·E †
r )(P).

Mr(P, CG ) is compact, since it is the image of a compact
set under a continuous function. �

4. Complexity (relative) entropy and state-complexity
measures

The complexity entropy relates to pure-state complexity
as follows.
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Proposition 20 (Relation between complexity entropy
and pure-state complexity). Let P denote any set of sim-
ple POVM effects (Definition 7); and C, any adjoint-
invariant unitary-complexity measure (Definition 3). Let
r � 0, and let Mr = Mr(P, C) denote the POVM-effect-
complexity set defined in Eq. (B15). Let δ � 0, and let |ψ0〉
denote any pure reference state such that ψ0 ∈ P. Let Cψ0,δ

denote the δ-approximate-pure-state-complexity measure
with respect to C and ψ0 (Definition 5). Let |ψ〉 denote
any pure state. The following statements hold:

(i) Suppose that δ < 1 and r > Cψ0,δ(ψ). Then

H r, 1−δ2

H (ψ) � log
(

1
1 − δ2

)
. (D31)

(ii) Let r0 � 0 and ε ∈ [0, 1). Suppose that H r, 1−ε2

H (ρ)

� log
(
1/

[
1 − ε2

])
. Then

Cψ0,δ(ψ) � r + r0, (D32)

where

δ = ε +
√
αε2 + (1 − α);

α := lim
ζ→0+

inf
P∈P

tr(P2)
[tr(P)]2

�1−8ε2−ζ

×

⎧⎪⎨
⎪⎩

sup
U0:

C(U0)�r0

{
〈ψ0 |U0PU†

0 |ψ0〉
}
⎫⎪⎬
⎪⎭

. (D33)

The error parameter α is necessary for the second state-
ment of the proposition. α assumes simple values for
suitable choices of P, C, |ψ0〉, and r0. For instance, con-
sider an n-qubit system, and let |ψ0〉 = |0n〉. Suppose that
P equals the set of single-qubit projectors in Eq. (10). For
every P ∈ P, the supremum in Eq. (D33) achieves its max-
imum value with U0 = 1: 〈0n |U0PU†

0 | 0n〉 = 〈0n〉 0n = 1.
[For any C and any r0, C(1) = 0 � r0.] Having unit purity,
P = |0n〉〈0n| always satisfies the constraint on the infi-
mum in Eq. (D33), so α = 1, and δ = 2ε. Now, suppose
that P equals the set of tensor products of all single-
qubit projectors. Suppose further that C assigns the value 1
(0) to every single-qubit unitary and that r0 = n (r0 = 0).
Then, for all P ∈ P, there exists a tensor product U0 of
single-qubit unitaries such that 〈ψ0 |U0PU†

0 |ψ0〉 = 1. U0
satisfies C(U0) � r0. Having unit purity, every rank-1 pro-
jector in P always satisfies the constraint on the infimum
in Eq. (D33); so, again, α = 1, and δ = 2ε.

We now relate the complexity relative entropy to the
strong complexity of Ref. [17]. Let

βr(ρ, σ) := max
M∈Mr

{|tr(M [ρ − σ ])|}. (D34)

Let δ � 0, and let |ψ〉 denote a pure state in a Hilbert
space of dimensionality d. The strong complexity of |ψ〉
is defined as

Cδstrong(|ψ〉) := inf
{

r � 0 : βr(ψ ,π) � 1 − 1
d
− δ

}
.

(D35)

The π := 1/d denotes the maximally mixed state. Our
definition of βr(ψ ,π) differs slightly from that in Ref. [17],
wherein Mr can be defined using an auxiliary system.

The following proposition presents a bound relating the
complexity entropy and the strong complexity.

Proposition 21 (Complexity entropy and strong com-
plexity). Let ρ and σ denote any quantum states. Let r � 0
and η ∈ (0, 1]. It holds that

Dr, η
H (ρ ‖ σ) � − log

(
1 − βr(ρ, σ)

η

)

= βr(ρ, σ)
η

+ O

[(
βr(ρ, σ)

η

)2
]

. (D36)

Furthermore, let δ � 0, and let |ψ〉 denote any pure state
in a Hilbert space of dimensionality d. Suppose that r <
Cδstrong(|ψ〉) and η > 1 − d−1 − δ. Then

H r, η
H (ψ) > log(d)− log

(
1

1 − c

)
;

c := 1 − d−1 − δ

η
< 1. (D37)

We now prove Propositions 20 and 21.

Proof of Proposition 20. We prove the first statement.
Let ζ := r − Cψ0,δ(ψ) > 0. There exists a unitary U such
that 1

2‖Uψ0U† − ψ‖1 � δ and C(U) � r = Cψ0,δ(ψ)+ ζ .
Let Q := Uψ0U†. Q ∈ Mr, since ψ0 ∈ P and C(U†) =
C(U) � r, by the adjoint-invariance of C. Moreover,

tr(Qψ) = tr
(
Uψ0U†ψ

) = |〈ψ |U |ψ0〉|2

= 1 −
(

1
2
‖Uψ0U†−ψ‖1

)2

� 1 − δ2. (D38)

The last equality expresses a general relation for the
trace norm [95]: for any two pure states |φ〉 and |ϕ〉,
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1
2‖φ − ϕ‖1 =

√
1 − |〈ϕ〉φ|2. Thus, Q is a candidate for the

H r, 1−δ2

H (ψ) optimization, so

H r, 1−δ2

H (ψ) � log
(

tr(Q)
tr(Qψ)

)
� log

(
1

1 − δ2

)
. (D39)

We now prove the second statement. Suppose that
H r, 1−ε2

H (ψ) � log
(
1/

[
1 − ε2

])
. Let ζ > 0. There exists a

Q ∈ Mr such that tr(Qψ) � 1 − ε2 and

tr(Q)
tr(Qψ)

� eHr, 1−ε2
H (ψ) + ζ � 1

1 − ε2 + ζ . (D40)

Q = U†PU for some effect P ∈ P and for some unitary U
satisfying C(U) � r. Let |ψ ′〉 := U |ψ〉. It holds that

F2
(
ψ ′,

P
tr(P)

)
= 〈ψ ′ | P

tr(P)
|ψ ′〉 = tr(Pψ ′)

tr(P)

=
[

tr(Q)
tr(Qψ)

]−1

� 1 − ε2 − ζ1. (D41)

Here and in the following, each ζi ≡ ζi(ζ ) > 0 is an error
parameter such that limζ→0+ ζi = 0. By a Fuchs-van de
Graaf inequality [134],

1
2

∥∥∥∥ψ ′ − P
tr(P)

∥∥∥∥
1
�

√
1 − F2

(
ψ ′,

P
tr(P)

)
�

√
ε2 + ζ1.

(D42)

Let

αP := sup
U0:

C(U0)�r0

{
〈ψ0 |U0PU†

0 |ψ0〉
}

. (D43)

There exists a unitary U0 such that C(U0) � r0 and

〈ψ0 |U0PU†
0 |ψ0〉 � αP − ζ . (D44)

Consequently,

F2
(

U†
0ψ0U0,

P
tr(P)

)
= 〈ψ0 |U0

P
tr(P)

U†
0 |ψ0〉 � αP − ζ

tr(P)

� (αP − ζ )
(
1 − ε2 − ζ1

) = αP
(
1 − ε2)− ζ2. (D45)

The second inequality follows from Eq. (D41)

1
tr(P)

� tr(Pψ ′)
tr(P)

� 1 − ε2 − ζ1. (D46)

The largest eigenvalue of P, ‖P‖, satisfies ‖P‖ �
〈ψ ′ |P |ψ ′〉 = 〈ψ |Q |ψ〉 � 1 − ε2, so tr

(
P2

)
� ‖P2‖ =

‖P‖2 �
(
1 − ε2

)2, because P is positive semidefinite.
Hence,

tr
(
P2

)
[

tr(P)
]2 �

(
1 − ε2)2(

1 − ε2 − ζ1
)2 = (

1 − ε2)4 − ζ3

� 1 − 4ε2 − 4
(
ε2)3 − ζ3 � 1 − 8ε2 − ζ3,

(D47)

so

αP � αζ3 := inf
P∈P

tr(P2)
[tr(P)]2

�1−8ε2−ζ3

{αP}. (D48)

Thus,

F2
(

U†
0ψ0U0,

P
tr(P)

)
� αζ3

(
1 − ε2)− ζ2. (D49)

By a Fuchs-van de Graaf inequality,

1
2

∥∥∥∥U†
0ψ0U0 − P

tr(P)

∥∥∥∥
1
�

√
1 − F2

(
U†

0ψ0U0,
P

tr(P)

)

�
√

1 − αζ3
(
1 − ε2

)− ζ2.
(D50)

Since the trace norm is unitarily invariant and obeys the
triangle inequality, Eqs. (D42) and (D50) imply that

1
2

∥∥∥ψ − U†U†
0ψ0U0U†

∥∥∥
1
= 1

2

∥∥∥UψU†−U†
0ψ0U0

∥∥∥
1

�
√
ε2 + ζ1 +

√
1 − αζ3

(
1 − ε2

)− ζ2 =: δζ . (D51)

By the adjoint invariance of C, C
(
U†U†

0

)
� C

(
U†

)+
C
(
U†

0

) = C(U)+ C(U0) � r + r0, so

Cψ0,δζ (ψ) � r + r0. (D52)

Since limζ→0+ δζ = δ and since C is right-continuous [as
per Eq. (B4)],

Cψ0,δ(ψ) = lim
ζ→0+

Cψ0,δζ (ψ) � r + r0. (D53)

�

Proof of Proposition 21. Consider any ζ > 0. There
exists a Q ∈ Mr such that tr(Qρ) � η and tr(Qσ)/ tr(Qρ) �
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exp (− Dr, η
H (ρ ‖ σ))+ ζ . It holds that

tr(Qσ)
tr(Qρ)

= 1 − tr(Q[ρ − σ ])
tr(Qρ)

� 1 − βr(ρ, σ)
tr(Qρ)

� 1 − βr(ρ, σ)
η

, (D54)

so

e−Dr, η
H (ρ ‖ σ) � 1 − βr(ρ, σ)

η
+ ζ , (D55)

which implies Eq. (D36), since ζ is arbitrary.
We now prove Eq. (D37). Suppose that r < Cδstrong(|ψ〉)

and η > 1 − d−1 − δ. r < Cδstrong(|ψ〉) implies that βr(ψ ,π)
< 1 − d−1 − δ < η, so

H r, η
H (ψ) = log(d)− Dr, η

H (ψ ‖π)

� log(d)+ log
(

1 − βr(ψ ,π)
η

)

> log(d)+ log
(

1 − 1 − d−1 − δ

η

)

= log(d)− log
(

1
1 − c

)
. (D56)

�

5. Reduced complexity (relative) entropy and related
quantities

a. Definition of the reduced complexity (relative) entropy

Some situations call for a variant of the complexity (rel-
ative) entropy—a variant that lacks the denominator in Eq.
(D2) [in Eq. (D1)]. We call these variants the reduced
complexity relative entropy and the reduced complexity
entropy. The variants lack a desirable property possessed
by the original versions: the reduced complexity (relative)
entropy may diverge as η → 0, whereas the complexity
(relative) entropy will not whenever � is positive defi-
nite (see Proposition 10). Nevertheless, the variants bear
simpler definitions than the originals and more readily
facilitate certain technical proofs. In any case, the reduced
complexity (relative) entropy and the complexity (rela-
tive) entropy differ by at most log(1/η) (Proposition 22).
Therefore, the quantities are interchangeable if the error
tolerance is insignificant: η ≈ 1.

Definition 15 (Reduced complexity relative entropy).
Let ρ denote any subnormalized state; and �, any positive-
semidefinite operator. Let r � 0 and η ∈ (0, tr(ρ)]. Here,
ρ, �, and every Q ∈ Mr act on the same Hilbert space.

The reduced complexity-restricted hypothesis-testing rel-
ative entropy, or simply the reduced complexity relative
entropy, is

Dr, η
h (ρ ‖�) := − log

⎛
⎝ inf

Q∈Mr

tr(Qρ)�η

{tr(Q�)}
⎞
⎠. (D57)

Definition 16 (Reduced complexity entropy). Let ρ
denote any subnormalized state. Let r � 0 and η ∈
(0, tr(ρ)]. The reduced complexity-restricted hypothesis-
testing entropy, or simply the reduced complexity entropy,
is

H r, η
h (ρ) := −Dr, η

h (ρ ‖1) = log

⎛
⎝ inf

Q∈Mr

tr(Qρ)�η

{tr(Q)}
⎞
⎠.

(D58)

By the constraint η � tr(Qρ) � 1, the reduced complex-
ity (relative) entropy differs from the complexity (relative)
entropy by at most log(1/η):

Proposition 22 (Difference between Dr,η
h and Dr,η

H ). Let
ρ denote any subnormalized state; and �, any positive-
semidefinite operator. Let r � 0 and η ∈ (0, tr(ρ)]. It holds
that

0 � Dr, η
h (ρ ‖�)− Dr, η

H (ρ ‖�) � log
(

1
η

)
(D59a)

and 0 � H r, η
H (ρ)− H r, η

h (ρ) � log
(

1
η

)
. (D59b)

If ρ is normalized, Dr, η=1
h (ρ ‖�) = Dr, η=1

H (ρ ‖�), and
H r, η=1

h (ρ) = H r, η=1
H (ρ).

Proof. The denominator tr(Qρ) in Definition 13 is con-
strained to η � tr(Qρ) � 1, leading to the claimed bounds.
The second part of the proposition follows by setting η = 1
in the bounds. �

The reduced complexity (relative) entropy also obeys
bounds similar to those in Proposition 10.

Proposition 23 (General bounds for Dr,η
h ). Let ρ denote

any subnormalized state, and � any positive-semidefinite
operator, that act on a Hilbert space of dimensionality d.
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Let r � 0 and η ∈ (0, tr(ρ)]. It holds that

Dr, η
h (ρ ‖�) � − log (tr(�)). (D60a)

Furthermore, if � is positive definite (has full rank),

Dr, η
h (ρ ‖�) � log

(‖�−1‖)+ log (tr(ρ))+ log
(

1
η

)
.

(D60b)

In particular,

− log (tr(ρ))− log
(

1
η

)
� H r, η

h (ρ) � log(d). (D61)

Consequently, if ρ is normalized and � is positive definite,

− log (tr(�)) � Dr, η
h (ρ ‖�) � log

(‖�−1‖)+ log
(

1
η

)
,

(D62a)

and − log
(

1
η

)
� H r, η

h (ρ) � log(d). (D62b)

Proof. Equation (D60a) follows because 1 ∈ Mr is a
candidate effect for the Dr, η

h (ρ ‖�) optimization. Equation
(D60b) follows from combining Eq. (D4b) of Proposition
10 with Eq. (D59a) of Proposition 22. �

Equation (D60a) implies that Dr, η
h (ρ ‖ σ) � 0 for nor-

malized states ρ and σ .
The reduced complexity (relative) entropy possesses

several elementary properties of the complexity (relative)
entropy.

Proposition 24 (Properties of Dr,η
h ). The following

propositions hold if, everywhere therein, one replaces the
complexity (relative) entropy with the reduced complexity
(relative) entropy: Proposition 12, Proposition 13, Propo-
sition 14, Proposition 15, Proposition 16, and Proposition
17.

Proof. Adapt the propositions’ proofs as appropri-
ate. �

In general, the reduced complexity (relative) entropy
lacks the properties stated in Proposition 9 and in Proposi-
tion 11. Proposition 9 does not hold because Dr, η

h (ρ ‖ ρ) >
0 if Mr = {1} and tr(1) > 1. Proposition 11 does not hold
because H r, η

h (ρ), but not H η
H(ρ), can be negative.

b. Complexity success probability

It is convenient to introduce a quantity closely related to
the reduced complexity entropy. We call this quantity the
complexity success probability. Given any subnormalized

state ρ and any r � 0, we have defined the reduced com-
plexity entropy as the infimum of log (tr(Q)) over all Q ∈
Mr, subject to a constraint (a lower bound) on tr(Qρ), the
probability of successfully identifying ρ. Reciprocally, we
define the complexity success probability as the supremum
of tr(Qρ) over all Q ∈ Mr, subject to a constraint (an upper
bound) on log (tr(Q)).

Definition 17 (Complexity success probability). Let ρ
denote any subnormalized state. Let r � 0. Let m− :=
infη

{
H r, η

h (ρ)
}

and m+ := supη
{
H r, η

h (ρ)
} = H r, η=tr(ρ)

h (ρ),
with η ranging over (0, tr(ρ)]. Let m ∈ [m−, m+] if m− is
the minimum of

{
H r, η

h (ρ)
}
η
; otherwise, let m ∈ (m−, m+].

The reduced-complexity-entropy success probability, or
simply the complexity success probability, is

η
r, m
h (ρ) := sup

{
η : H r, η

h (ρ) � m
} = sup

Q∈Mr

log ( tr(Q))�m

{tr(Qρ)}.

(D63)

η
r, m
h (ρ) appears in the proof of Proposition 30

(Appendix F).
η

r, m
h (ρ) takes a simple form in the special case where Mr

is defined for n qubits, as in Eq. (11). Consider any candi-
date Q ∈ Mr. Q = U†PU for some unitary U and for some
effect P that, up to a permutation of qubits, equals 1

⊗kQ
2 ⊗

|0n−kQ〉〈0n−kQ |, wherein kQ := log2 (tr(Q)). log (tr(Q)) �
m precisely if kQ � m/ log(2), which holds precisely if
kQ � �m/ log(2)�. Moreover, if kQ < �m/ log(2)�, then
there exists a Q̃ ∈ Mr such that kQ̃ = �m/ log(2)� and
tr(Q̃ρ) � tr(Qρ).

(
Indeed, let Q̃ := U†P̃U, wherein P̃,

up to the aforementioned permutation, equals 1
⊗kQ̃
2 ⊗

|0n−kQ̃〉〈0n−kQ̃ |.) Thus, we can replace the constraint kQ �
�m/ log(2)� with kQ = �m/ log(2)�:

η
r, m
h (ρ) = sup

Q∈Mr

log2(tr(Q))=�m/ log(2)�

{tr(Qρ)}. (D64)

The complexity success probability monotonically
increases as r increases and monotonically increases as m
increases.

Proposition 25 (Monotonicity of ηr, m
h in r and m). Let ρ

denote any subnormalized state. Let r � 0. Let m and m+
be as in Definition 17.

(i) For all r′ � r, ηr′, m
h (ρ) � η

r, m
h (ρ).

(ii) For all m′ ∈ [m, m+], ηr, m′
h (ρ) � η

r, m
h (ρ).

Proof. Consider the definition (D63) of ηr, m
h (ρ). Con-

sider any η ∈ (0, tr(ρ)]. The monotonicity in r fol-
lows because H r, η

h (ρ) � m implies that H r′, η
h (ρ) � m, by

Proposition 12 (via Proposition 24). The monotonicity in
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m follows because H r, η
h (ρ) � m implies that H r, η

h (ρ) �
m′. �

Moreover, the complexity success probability is convex.

Proposition 26 (Convexity of ηr, m
h ). Let {pk} denote any

probability distribution; and {ρk}, any associated collec-
tion of subnormalized states. Let r � 0. Let m be as in
Definition 17. It holds that

η
r, m
h

(∑
k

pkρk

)
�

∑
k

pk η
r, m
h (ρk). (D65)

Proof. Consider any ζ > 0. There exists a Q ∈ Mr such
that log(tr(Q)) � m and

η
r, m
h

(∑
k

pkρk

)
− ζ � tr

(
Q

[∑
k

pkρk

])
=

∑
k

pk tr(Qρk)

�
∑

k

pk η
r, m
h (ρk). (D66)

The second inequality holds because, for each k, Q is a
candidate for the ηr, m

h (ρk) optimization and thus satisfies
tr(Qρk) � η

r, m
h (ρk). Equation (D65) now follows because

ζ is arbitrary. �

c. Interrelating reduced complexity (relative) entropies
under two computational models

Under certain conditions, a simple bound relates
reduced complexity (relative) entropies defined with
respect to different computational models.

Proposition 27 (Reduced complexity relative entropies
under two computational models). Let ρ denote any sub-
normalized state; and �, any positive-semidefinite oper-
ator. Let P denote any set of simple POVM effects
(Definition 7), and let C(1) and C(2) denote superoperator-
complexity measures (Definition 1). For each i = 1, 2, let{
Mr,(i) := Mr

(
P, C(i)

)}
denote the family of POVM-effect-

complexity sets defined by Eq. (B15). Let r � 0, α > 0,
ε ∈ [0, 1], and η ∈ (ε, 1]. Assume there exists a monotoni-
cally increasing function f : R+ → R+ with the following
property: for every operation E satisfying C(1)(E ) <∞,
there exists an operation F such that

1
2
‖E − F‖� � ε, F (�) � αE (�),

and C(2)(F ) � f (C(1)(E )). (D67)

It holds that

Df (r), η−ε
h, (2) (ρ ‖�) � Dr, η

h, (1)(ρ ‖�)− log(α). (D68)

The reduced complexity relative entropies Dr, η
h, (1) and

Df (r), η−ε
h, (2) are defined with respect to Mr,(1) and Mf (r),(2),

respectively.

Corollary 3 (Reduced complexity entropies under two
unitary computational models). Let ρ denote any subnor-
malized state. Let P denote any set of simple POVM
effects (Definition 7), and let C(1) and C(2) denote unitary-
complexity measures (Definition 3). For each i = 1, 2,
let

{
Mr,(i) := Mr

(
P, C(i)

)}
denote the family of POVM-

effect-complexity sets defined by Eq. (B15). Let r � 0,
ε ∈ [0, 1], and η ∈ (ε, 1]. Assume there exists a monotoni-
cally increasing function f : R+ → R+ with the following
property: for every unitary U satisfying C(1)(U) <∞,
there exists a unitary V such that

‖U − V‖ � ε and C(2)(V) � f (C(1)(U)). (D69)

It holds that

H f (r), η−ε
h, (2) (ρ) � H r, η

h, (1)(ρ). (D70)

The reduced complexity entropies H r, η
h, (1) and H f (r), η−ε

h, (2) are
defined with respect to Mr,(1) and Mf (r),(2), respectively.

Proof of Proposition 27. Consider any ζ > 0. There
exists a Q ∈ Mr,(1) such that Dr, η

h, (1)(ρ ‖�) �
− log ( tr(Q�))+ ζ . Q = E †(P) for some effect P ∈ P and
for some operation E satisfying C(1)(E ) � r. By assump-
tion, there exists an operation F satisfying the conditions
(D67). Hence, C(2)(F ) � f (C(1)(E )) � f (r). The second
inequality follows because f is monotonically increasing.
Let Q′ := F †(P) ∈ Mf (r),(2). It holds that

tr(Q′ρ) = tr (PF (ρ)) � tr (PE (ρ))− ε

= tr(Qρ)− ε � η − ε. (D71)

The first inequality follows because tr (PF (ρ)) �
tr (PE (ρ))− 1

2‖E (ρ)− F (ρ)‖1, by Corollary 9.1.1 of
Ref. [109], and because 1

2‖E − F‖� � ε implies that
1
2‖E (ρ)− F (ρ)‖1 � ε, by Eq. (A2). Therefore, Q′ is a
candidate for the Df (r), η−ε

h, (2) (ρ ‖�) optimization. Moreover,
tr(Q′�) = tr (PF (�)) � tr (P[αE (�)]) = α tr(Q�), so

Df (r), η−ε
h, (2) (ρ ‖�) � − log (tr(Q′�)) � − log (tr(Q�))

− log(α) � Dr, η
h, (1)(ρ ‖�)− log(α)− ζ ,

(D72)

which implies Eq. (D68), since ζ is arbitrary. �

Proof of Corollary 3. Equation (D70) follows from
applying Proposition 27 when � = 1 and α = 1. We
need to show only that the conditions (D67) hold in
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this case. Let � = 1 and α = 1. Consider any operation
E satisfying C(1)(E ) <∞. E is a unitary operation,
since C(1) is a unitary-complexity measure. Hence, E (·) =
U(·)U† for some unitary operator U satisfying C(1)(U) <
∞. By assumption, there exists a unitary operator V such
that ‖U − V‖ � ε and C(2)(V) � f (C(1)(U)). Let F (·) :=
V(·)V†. By Lemma 2, 1

2‖E − F‖� � ‖U − V‖ � ε.
Also, F (�) � αE (�), since F (1) = 1 = E (1). Last,
C(2)(F ) � f (C(1)(E )) is a restatement of C(2)(V) �
f (C(1)(U)). �

6. Complexity conditional entropy

We here define the complexity conditional entropy in
terms of the complexity relative entropy, just as one defines
one-shot conditional entropies in terms of one-shot rela-
tive entropies [94]. In Sec. V G, the complexity conditional
entropy quantifies the maximally mixed qubits one can
decouple from a reference system.

Definition 18 (Complexity conditional entropy). Let A
and B denote distinct quantum systems. Let ρAB denote any
subnormalized state of AB. Let r � 0 and η ∈ (0, tr(ρ)].
The complexity conditional entropy of A conditioned on B
is

H r, η
H (A |B)ρ := −Dr, η

H (ρAB ‖1A ⊗ ρB). (D73)

Proposition 28 (General bounds for the complexity con-
ditional entropy). Let A and B denote distinct quantum
systems. Let ρAB denote any subnormalized state of AB.
Let r � 0 and η ∈ (0, tr(ρ)]. It holds that

− log(dA) � H r, η
H (A |B)ρ � log(dA). (D74)

Equivalently,

0 � Dr, η
H (ρAB ‖πA ⊗ ρB) � 2 log(dA). (D75)

Proof. H r, η
H (A |B)ρ � log(dA) follows from applying

Eq. (D4a) in Proposition 10 with � = 1A ⊗ ρB:

−Dr, η
H (ρAB ‖1A ⊗ ρB) � log ( tr(1A ⊗ ρB))− log ( tr(ρAB))

= log (dA tr(ρB))− log ( tr(ρB))

= log(dA). (D76)

The first equality follows because tr(ρAB) = trB ( trA(ρAB))

= tr(ρB). H r, η
H (A |B)ρ � − log(dA) follows from apply-

ing Proposition 14 to the inequality d−1
A ρAB � 1A ⊗ ρB

(Lemma 1):

−Dr, η
H (ρAB ‖1A ⊗ ρB) � −Dr, η

H (ρAB ‖ d−1
A ρAB)

= −Dr, η
H (ρAB ‖ ρAB)− log(dA)

= − log(dA). (D77)

The first equality follows from Proposition 13 and the
second equality from Proposition 9.

Last, Eqs. (D74) and (D75) are equivalent because
Proposition 13 implies that H r, η

H (A |B)ρ = log(dA)−
Dr, η

H (ρAB ‖πA ⊗ ρB):

H r, η
H (A |B)ρ = −Dr, η

H (ρAB ‖1A ⊗ ρB)

= −Dr, η
H (ρAB ‖ dAπA ⊗ ρB)

= log(dA)− Dr, η
H (ρAB ‖πA ⊗ ρB). (D78)

�

Proposition 29 (Strong subadditivity of the complexity
conditional entropy). Let A, B, and C denote distinct quan-
tum systems. Let ρABC denote any subnormalized state of
ABC. Let r � 0 and η ∈ (0, tr(ρ)]. It holds that

H r, η
H (A |BC)ρ � H r, η

H (A |B)ρ . (D79)

Proof. By Proposition 16, the complexity relative
entropy never increases under a partial trace, so

H r, η
H (A |BC)ρ = −Dr, η

H (ρABC ‖1A ⊗ ρBC)

� −Dr, η
H (ρAB ‖1A ⊗ ρB)

= H r, η
H (A |B)ρ . (D80)

�

APPENDIX E: THERMODYNAMIC ERASURE OF
QUBITS GOVERNED BY A PRODUCT

HAMILTONIAN

Here, we generalize the arguments in Sec. III A to
prove Theorem 3 (Sec. III B). Recall the theorem’s setting.
We consider a system of n noninteracting qubits. Qubit i
evolves under a Hamiltonian Hi that has zero ground-state
energy, Hi |0〉i = 0. We fix an inverse temperature β > 0.
Qubit i has the Gibbs-weight operator �i = e−βHi ; and the
n-qubit system, the Gibbs-weight operator � = ⊗n

i=1 �i =
e−β

∑
i Hi .

Let T denote a set of elementary computations on
the n-qubit system. Each computation in T is a com-
pletely positive, trace-preserving map that sends � to
itself and costs no work to implement. After imple-
menting elementary computations, one can apply RESET
operations to a selection W ⊂ {1, 2, . . . , n} of qubits.
Each RESET operation ERESET,i initializes qubit i in the
state |0〉i and costs an amount of work WRESET,i =
β−1 log ( tr(�i)) � 0. Consider a general protocol E con-
sisting of r � 0 elementary computations followed by
RESET operations on the qubits of W . E has the form E =(∏

i∈W ERESET,i
)
Er · · ·E2E1. Each Ei is in T , and the work

cost W(E ) = ∑
i∈W WRESET,i = β−1 log (

∏
i∈W tr(�i)).

Theorem 5. Let ρ denote any quantum state of n qubits.
Let P denote the set of simple POVM effects (Definition 7)
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defined in Eq. (10). Let CT denote the circuit-complexity
measure associated with T (Definition 2). Let r � 0
denote an integer, and let η ∈ (0, 1]. Let Mr = Mr(P, CT )

denote the POVM-effect-complexity set defined in Eq.
(B15). Let

W∗
r := min

{
W(E ) : E =

(∏
i∈W

ERESET,i

)
Er · · ·E2E1, W ⊂ {1, 2, . . . , n}, F2(E (ρ), |0n〉〈0n|) � η

}
. (E1)

Each Ei is in T , and F denotes the fidelity between
quantum states. It holds that

βW∗
r = −Dr, η

h, T (ρ ‖�), (E2)

wherein the reduced complexity relative entropy Dr, η
h, T

(Definition 15) is defined with respect to Mr. Conse-
quently,

−Dr, η
H, T (ρ ‖�)− log

(
1
η

)
� βW∗

r � −Dr, η
H, T (ρ ‖�).

(E3)

Consider the special case where each Hamiltonian Hi
is degenerate: Hi = 0. In this case, � = 1. By Eq. (E2),
βW∗

r equals the reduced complexity entropy (Definition
16): βW∗

r = −Dr, η
h, T (ρ ‖1) = H r, η

h, T (ρ). If, furthermore,
T contains only unitary operations, then Eq. (E3) yields
the bounds in Theorem 1 (Sec. III A).

Proof of Theorem 5. We first prove that βW∗
r �

−Dr, η
h, T (ρ ‖�). Consider any operation E that achieves

the minimum in Eq. (E1) and thus satisfies W(E ) = W∗
r .

E = (∏
i∈W ERESET,i

)
Er · · ·E2E1 for some subset W ⊂

{1, 2, . . . , n} and some operations Ei ∈ T . Moreover,
F2(E (ρ), |0n〉〈0n|) � η. Let P := 1W ⊗ |0n−|W |〉〈0n−|W ||W c

∈ P, wherein W c denotes the set complement of W . Let
Q := E †

1 E †
2 · · ·E †

r (P) ∈ Mr. It holds that

tr(Qρ) = tr (P Er · · ·E2E1(ρ))

= tr
{|0n−|W |〉〈0n−|W ||W c trW (Er · · ·E2E1(ρ))

}

= tr (|0n〉〈0n|E (ρ)) = F2(E (ρ), |0n〉〈0n|). (E4)

The third equality follows because E (ρ) = |0|W |〉〈0|W ||W ⊗
trW (Er · · ·E2E1(ρ)). Hence, tr(Qρ) � η, so Q is a candi-
date for the Dr, η

H, T (ρ ‖�) optimization. Furthermore,

tr(Q�) = tr (P Er · · ·E1(�)) = tr(P�)

= tr

([∏
i∈W

�i

]
⊗ |0n−|W |〉〈0n−|W ||W c

)

=
∏
i∈W

tr(�i) = eβW(E ). (E5)

The second equality follows because Er · · ·E2E1(�) = �,
since each Ei satisfies Ei(�) = �. Thus, βW∗

r = βW(E ) =
log (tr(Q�)) � −Dr, η

h, T (ρ ‖�).
We now prove that βW∗

r � −Dr, η
h, T (ρ ‖�). Consider

any ζ > 0. There exists a Q ∈ Mr such that tr(Qρ) �
η and log (tr(Q�)) � −Dr, η

h, T (ρ ‖�)+ ζ . Since Mr =
Mr(P, CT ), Q = E †

1 E †
2 · · ·E †

r (P) for some operations
Ei ∈ T and for some effect P ∈ P, with P = 1W ⊗
|0n−|W |〉〈0n−|W ||W c for some subset W ⊂ {1, 2, . . . , n}.
Let E := (∏

i∈W ERESET,i
)
Er · · ·E2E1. As per Eq. (E4),

F2(E (ρ), |0n〉〈0n|) = tr(Qρ) � η, so E is a candidate for
the W∗

r optimization in Eq. (E1). As per Eq. (E5), tr(Q�) =
eβW(E ), so βW∗

r � βW(E ) = log (tr(Q�)) � −Dr, η
h, T (ρ ‖�)

+ ζ . Thus, βW∗
r � −Dr, η

h, T (ρ ‖�), since ζ is arbitrary.
Finally, Eq. (E3) follows from substituting Eq. (E2) into
Eq. (D59a). �

APPENDIX F: EVOLUTION OF THE
COMPLEXITY ENTROPY UNDER RANDOM

CIRCUITS

Here, we prove the bound Eq. (47) to complete the proof
of Proposition 3 (Sec. V D), which describes the complex-
ity entropy’s evolution under random circuits. Random
circuits are often used as proxies for Hamiltonian quan-
tum chaotic dynamics. We adapt the proof of Theorem 8
in Ref. [17]; the theorem describes the strong complexity’s
growth under random circuits.

We consider a system of n � 2 qubits. Let G denote
any set of two-qubit unitary gates: G ⊂ SU(4). Let{
Mr

G

}
denote the family of POVM-effect-complexity sets

(Definition 6) defined by Eq. (11), wherein the computa-
tional gate set G equals the set of gates on n qubits, in G,
with arbitrary (fixed) connectivity.

Let E = {pj , Uj } denote a random ensemble of uni-
tary operators. Each unitary Uj ∈ U(2n) is chosen with
the probability pj . For each integer k > 0, we define the
k-twirling superoperator associated with E as

M (k)
E (·) :=

∑
j

pj U⊗k
j (·)U†⊗k

j . (F1)

010346-38



COMPLEXITY-CONSTRAINED QUANTUM THERMODYNAMICS PRX QUANTUM 6, 010346 (2025)

The k-twirling superoperator associated with the Haar
measure is

M (k)
Haar(·) :=

∫
dU U⊗k (·)U†⊗k. (F2)

dU denotes the Haar measure on the unitary group U(2n). If
M (k)

E and M (k)
Haar are sufficiently close in diamond distance,

E is an approximate k design.

Definition 19 (Approximate unitary k design). Let ε �
0, and let k > 0 denote an integer. An ensemble E =
{pj , Uj } is an ε-approximate unitary k design if

∥∥∥M (k)
E − M (k)

Haar

∥∥∥
�

� ε

2nk . (F3)

We employ the definition of an approximate k design
used in Ref. [56]; this definition differs from that used
in Ref. [17]. In Ref. [17],

(
k!/22nk

)
ε replaces the upper

bound in Eq. (F3). Therefore, an ε-approximate k design,
according to Definition 19, is a

(
2nkε/k!

)
-approximate

k-design, according to Ref. [17].
Following Ref. [17], we rely on the fact that random

circuits generate approximate k-designs [32,55,56,135]. In
particular, we utilize the following result, which shows that
certain random circuits of a depth t > 0 are approximate k
designs, with k ∼ t.

Theorem 6 ([32]). Consider an n-qubit system. Let ε̃ >
0 and c � 0 be independent of n. Let V denote a circuit of a
depth t > 0, with staggered layers of nearest-neighbor two-
qubit gates (the “brickwork” layout). Suppose each of the

circuit’s gates is chosen at random from the Haar measure
on SU(4). Then V is a (2−cnk ε̃)-approximate k design, with

k = min
{

2n/2−O(
√

n),
t

poly(n)

}
. (F4)

The dependence of k on ε̃ is hidden in the coefficient
implied by the poly(n) notation.

We briefly show how condition (F4) arises from the
results in Ref. [32]. Theorem 1.5 in Ref. [56] implies
the following statement. Let 0 < k � 2n/2−√

n−2 and let
ε > 0. Then there exists C > 0 such that depth-t brickwork
random circuits form an ε-approximate k design whenever

t � Cn3[2nk + log2(1/ε)] =: t0(k). (F5)

Setting ε = 2−cnk ε̃, with ε̃ ∈ (0, 1) a constant of n, and
using k � 2n/2, we find that

t0(k) � poly(n) k. (F6)

Consider now the setting of Theorem 6. The k specified
in Eq. (F4) implies t � t0(k), ensuring that Corollary 1 in
Ref. [56] applies.

The bound (47)—and hence Proposition 3—follows
from Theorem 6 and the following proposition.

Proposition 30 (Complexity-entropy lower bound with
an approximate k design (simple)). Let |ψ0〉 denote any
pure n-qubit state. Let ε̃ ∈ (0, 1). Assume that k is even.
Let V denote a circuit sampled from a (2−nk ε̃)-approximate
k design. Let r � 0 and η ∈ (0, 1]. Suppose that

r �
k
[ n

2 − log2(k)− log2(4/η)
]− {

3n + log2(n)
[
1 + log2(4/η)

]}

c1
[
2n + log2(2/η)

]4 + log2(n + 1)+ 1
, (F7)

wherein c1 > 0 denotes a constant independent of n. Then

H r, η
H

(
Vψ0V†) � H r, η

h

(
Vψ0V†) � n log(2)− log

(
4
η

)
,

(F8)

except with a probability � e−�(n) over the sampling of V.
Here, H r, η

H is defined with respect to Mr
SU(4).

We specify the constant c1 in the proof of Propo-
sition 30. To prove the proposition, we first use the

Solovay-Kitaev theorem [95,136–138] to approximate
SU(4) with a finite, universal gate set. We then apply
the following lemma, whose proof closely follows that of
Theorem 8 of Ref. [17].

Lemma 3 (Gate-set complexity-entropy lower bound for
approximate k-designs). Let |ψ0〉 denote any pure n-qubit
state. Let ε̃ ∈ (0, 1). Assume that k is even. Let V denote
a circuit sampled from a (2−nk ε̃)-approximate k design.
Let r � 0, η̄ ∈ (0, 1], c ∈ (0, 1), and g > 0. Suppose
that

r � 1
log2([n + 1]|G|)

(
k
[

n
2
− log2(k)− log2

(
1

η̄ (1 − c)

)]
−

{
(g + 1)n + 2 + log2(n)

[
1 + log2

(
1
cη̄

)]})
. (F9)
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Then

H r, η̄
h, G

(
Vψ0V†) � n log(2)− log

(
1
cη̄

)
, (F10)

except with a probability � 2−gn over the sampling of V.
Here, the reduced complexity entropy H r, η̄

h, G (Definition 16)
is defined with respect to Mr

G, wherein G is finite.

Proof. Let

m :=
⌊

n − log2

(
1
cη̄

)⌋
= n −

⌈
log2

(
1
cη̄

)⌉
. (F11)

Equation (F10) holds, except with the probability

p< := Pr
V

[
H r, η̄

h, G

(
Vψ0V†) < n log(2)− log

(
1
cη̄

)]

� Pr
V

[
H r, η̄

h, G

(
Vψ0V†) � n log(2)− log

(
1
cη̄

)]

= Pr
V

[
H r, η̄

h, G

(
Vψ0V†) � m log(2)

]

� Pr
V

[
η

r, m log(2)
h, G

(
Vψ0V†) � η̄

]

= Pr
V

⎡
⎢⎣ max

Q∈Mr

log2(tr(Q))=m

{
tr
(
QVψ0V†)} � η̄

⎤
⎥⎦

�
∑

Q∈Mr

log2(tr(Q))=m

Pr
V

[
tr
(
QVψ0V†) � η̄

]

=
∑

Q∈Mr

log2(tr(Q))=m

Pr
V

[
tr
([

Q − 2m−n1
]
Vψ0V†) � η̄ − 2m−n]

�
∑

Q∈Mr

log2(tr(Q))=m

Pr
V

[∣∣tr([Q − 2m−n1
]
Vψ0V†)∣∣

� |(1 − c)η̄|]
=

∑
Q∈Mr

log2(tr(Q))=m

Pr
V

[{
tr
([

Q − 2m−n1
]
Vψ0V†)}k

� {(1 − c)η̄}k]

�
∑

Q∈Mr

log2(tr(Q))=m

EV

[{
tr
(
[Q − 2m−n1]Vψ0V†

)}k
]

[(1 − c)η̄]k

�
∑

Q∈Mr

log2(tr(Q))=m

2
(

k
2n/2(1 − c)η̄

)k

= 2
(

k
2n/2(1 − c)η̄

)k ∣∣{Q ∈ Mr : log2 (tr(Q)) = m
}∣∣ .

(F12)

The second equality follows because, by the form of Mr,
H r, η̄

h

(
Vψ0V†

)
is an integer multiple of log(2). The second

inequality follows from Definition 17: H r, η̄
h

(
Vψ0V†

)
�

m log(2) implies that ηr, m log(2)
h

(
Vψ0V†

)
� η̄. The third

equality follows from Eq. (D64); here, the supremum is
a maximum because G—and hence Mr

G—is finite. The
third inequality is a crude union bound. The fourth equal-
ity introduces the traceless part of each Q: Q − 2m−n1 =
Q − tr(Q) · 2−n1. The fourth inequality follows because

∣∣tr([Q − 2m−n1
]
Vψ0V†)∣∣ � tr

([
Q − 2m−n1

]
Vψ0V†)

(F13)

and because η̄ − 2m−n � (1 − c)η̄ > 0, since 2m−n =
2−�log2(1/cη̄) � 2− log2(1/cη̄) = cη̄. The fifth equality follows
because, by assumption, k is even. The fifth inequal-
ity follows from Markov’s inequality: for any non-
negative random variable X and any τ > 0, Pr[X � τ ] =
E[X ]/τ . The last inequality follows from Corollary 24 of
Ref. [17]: EV

[{
tr([Q − 2m−n1]Vψ0V†)

}k
]

� (1 + ε)
(
k/2n/2

)k � 2
(
k/2n/2

)k, wherein ε = (2nk/k!)2−nk ε̃ � 1
(recall the alternative convention used for ε-approximate
designs in Ref. [17]).

By the form of Mr,
∣∣{Q ∈ Mr : log2(tr(Q)) = m

}∣∣ �
Nr

(n
m

)
. The Nr denotes the number of circuits that one

can compose from � r gates in G .
(n

m

)
is the num-

ber of projectors that, up to a permutation of qubits,
equal 1⊗m

2 ⊗ |0n−m〉〈0n−m|. By Eq. (B21) of Ref. [17],
Nr � 2n+1(n + 1)r|G|r. Moreover,

(n
m

) = ( n
n−m

)
� nn−m =

n�log2(1/cη̄) � n1+log2(1/cη̄). Hence,
∣∣{Q ∈ Mr : log2 ( tr(Q)) = m

}∣∣ � 2n+1(n + 1)r|G|r

· n1+log2(1/cη̄), (F14)

so p< � 2a+rb−ky , where

a := n + 2 + log2(n)
[

1 + log2

(
1
cη̄

)]
,

b := log2([n + 1]|G|), and

y := n
2
− log2(k)− log2

(
1

(1 − c)η̄

)
. (F15)

By Eq. (F9), r � 1
b [ky − (gn + a)], so a + rb − ky �

−gn. Thus, p< � 2−gn. �
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Proof of Proposition 30. Let ε′ := η/2. Let G ⊂ SU(4)
denote any finite gate set that forms an (ε′/4n)-net on
SU(4). One can build such a gate set using the Solovay-
Kitaev theorem [95,136–138] as follows. Consider any
finite, universal gate set G0 ⊂ SU(4), such as the Clifford
+ T gate set (see Appendix B 6 b). By the Solovay-Kitaev
theorem, one can approximate any unitary U ∈ SU(4)
to the error ε′ with at most N := cG0[log2(4

n/ε′)]4 =
cG0 [2n + log2(2/η)]

4 gates in G0. The cG0 > 0 is a uni-
versal constant depending only on G0. Now, let G consist
of all the circuits that one can compose from � N gates
in G0. One can approximate any unitary U ∈ SU(4) to the
error ε′ by some circuit in G. The number of circuits that
one can compose from exactly t > 0 gates in G0 is � |G0|t,
so

|G| �
N∑

t=1

|G0|t = |G0|
|G0| − 1

(|G0|N − 1
)
� 2|G0|N .

(F16)

Hence,

log2(|G|) � N log2(|G0|)+ 1 = c1

[
2n + log2

(
2
η

)]4

+1,

(F17)

wherein c1 := cG0 log2(|G0|).
We now apply Lemma 3. Set

g = 1, c = 1
2

, and η̄ = η − ε′ = η

2
. (F18)

r satisfies condition (F9) in the lemma, since the right-hand
side of Eq. (F7) lower-bounds the right-hand side of Eq.
(F9), as one can verify using the following inequalities:

log2([n + 1] |G|) � c1

[
2n + log2

(
2
η

)]4

+ log2(n + 1)+ 1, (F19)

log2

(
1

(1 − c)η̄

)
= log2

(
4
η

)
, (F20)

and 2 � n ⇒ (g + 1)n + 2 + log2

(
1
cη̄

)

� 3n + log2

(
4
η

)
. (F21)

Thus, by Lemma 3,

H r, η−ε′
h, G

(
Vψ0V†) = H r, η̄

h, G

(
Vψ0V†) � n log(2)− log

(
1
cη̄

)

= n log(2)− log
(

4
η

)
, (F22)

except with a probability � 2−n. Furthermore,

H r, η
H

(
Vψ0V†) � H r, η

h

(
Vψ0V†) � H r, η

h, G

(
Vψ0V†)

� H r, η−ε′
h, G

(
Vψ0V†), (F23)

wherein H r, η
h is defined with respect to Mr

SU(4). The
first inequality follows from Proposition 22. The second
inequality follows because Mr

G ⊂ Mr
SU(4): every candidate

Q ∈ Mr
G for the H r, η

h, G

(
Vψ0V†

)
optimization belongs to

Mr
SU(4) and is therefore a candidate for the H r, η

h

(
Vψ0V†

)
optimization. The third inequality follows from Proposi-
tion 12 (via Proposition 24). Therefore,

H r, η
H

(
Vψ0V†) � H r, η

h

(
Vψ0V†) � n log(2)− log

(
4
η

)
,

(F24)

except with a probability at most exponentially small in
n. �

APPENDIX G: ENTANGLEMENT BOUNDS ON
THE COMPLEXITY ENTROPY

Here, we use entanglement measures to bound the com-
plexity entropy, proving the results in Sec. V C. We restrict
our attention to a spatially one-dimensional chain S of
n � 2 qubits: S = S1S2 . . . Sn. Let

{
Mr

}
denote the family

of POVM-effect-complexity sets (Definition 6) defined by
Eq. (11), wherein the computational gate set G contains
only unitary operations that can act nontrivially only on
two neighboring qubits in S. Furthermore, we define the
potential entangling power of G (cf. Ref. [27]) as

e(G ) := sup
U∈G

{e(U)}, wherein e(U) := min{‖H‖ :

H = H †, ∃χ ∈ R such that e−iH = e−iχU
}
. (G1)

In general, e(G ) can be as large as π . However, our entan-
glement bounds are most interesting when G contains only
operations that act weakly and remain near the identity
operator (up to an overall phase). In this case, e(G ) ≈
e(1) = 0.

In the following, we use the quantum mutual informa-
tion. Let A and B denote distinct quantum systems, and let
σAB denote any state of AB. The quantum mutual informa-
tion of σAB is defined in terms of the von Neumann entropy
as

I (A : B)σ : = H (A)σ + H (B)σ − H (AB)σ
= H (A)σ − H (A |B)σ . (G2)

For any state ρ of the qubit chain S, we define the
entanglement measure
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E(ρ) := 1
n − 1

n−1∑
j=1

I (S1 . . . Sj : Sj+1 . . . Sn)ρ . (G3)

E(ρ) quantifies the average amount of correlation, as quan-
tified by the mutual information, between any bipartition
of S into subsystems of neighboring qubits. We now prove
the bounds in Proposition 2 and in Eq. (45).

Theorem 7 (Continuity bound on E(ρ) under one oper-
ation). Let ρ denote any quantum state of S. Let U
denote any unitary that can act nontrivially only on two
neighboring qubits in S. It holds that

∣∣E(
UρU†)− E(ρ)

∣∣

� 1
n − 1

min
{

8 log(2), 8ν log(2)

+ 3(1 + ν) h
(

ν

1 + ν

)}
. (G4)

The h(x) := −x log(x)− (1 − x) log(1 − x) denotes the
binary entropy function, and

ν := sin
(

min
{

e(U),
π

2

})
. (G5)

Proof. Let ρ ′ denote the state that results from evolv-
ing ρ under U: ρ ′ := UρU†. For all j ∈ {1, 2, . . . , n −

1}, we write, for short, Aj := S1S2 . . . Sj and Bj+1 :=
Sj+1Sj+2 . . . Sn. By Eq. (G3),

E(ρ ′)− E(ρ)

= 1
n − 1

n−1∑
j=1

[
I (Aj : Bj+1)ρ′ − I (Aj : Bj+1)ρ

]
. (G6)

Let k, k + 1 ∈ {1, 2, . . . , n} denote two qubits on which U
can act nontrivially. For all j 	= k, I (Aj : Bj+1)ρ′ = I (Aj :
Bj+1)ρ : U can act nontrivially on qubits only in Aj or only
in Bj+1, so

I (Aj : Bj+1)ρ = H (Aj )ρ + H (Bj+1)ρ − H (Aj Bj+1)ρ

= H (Aj )ρ′ + H (Bj+1)ρ′ − H (Aj Bj+1)ρ′

= I (Aj : Bj+1)ρ′ . (G7)

The first and last equalities follow from Eq. (G2). The mid-
dle equality follows because the von Neumann entropy is
unitarily invariant. Thus,

E(ρ ′)− E(ρ) = 1
n − 1

[
I (Ak : Bk+1)ρ′ − I (Ak : Bk+1)ρ

]
.

(G8)

Using the chain rule for the von Neumann entropy,
we simultaneously re-express I (Ak : Bk+1)ρ and I (Ak :
Bk+1)ρ′ :

I (Ak : Bk+1)

= H (Ak)+ H (Bk+1)− H (AkBk+1)

= H (Ak−1)+ H (Sk |Ak−1)+ H (Bk+2)+ H (Sk+1 |Bk+2)− H (Ak−1Bk+2)− H (SkSk+1 |Ak−1Bk+2)

= H (Sk |Ak−1)+ H (Sk+1 |Bk+2)− H (SkSk+1 |Ak−1Bk+2)︸ ︷︷ ︸
(I)

+H (Ak−1)+ H (Bk+2)− H (Ak−1Bk+2)︸ ︷︷ ︸
(II)

. (G9)

Ak−1(Bk+2) is trivial if k = 1 (k = n − 1). Since U can act
nontrivially only on SkSk+1, the reduced states of ρ and
ρ ′ on Ak−1Bk+2 coincide. Hence, the terms in (II) have
the same value whether evaluated on ρ or on ρ ′, so (G8)
equals the difference between the terms in (I) evaluated
on ρ and on ρ ′. We now upper-bound the absolute value
of this difference. Let U (·) := U(·)U†. By the diamond
norm’s definition (A1) and by Lemma 2,

1
2
‖ρ ′ − ρ‖1 = 1

2
‖(U − id)ρ‖1 � 1

2
‖U − id‖�

= sin
(

min
{

e(U),
π

2

})
= ν. (G10)

By the Alicki-Fannes-Winter continuity bound on the con-
ditional entropy [139,140] (see Lemma 2 of Ref. [140]),

Eq. (G10) implies that the terms in (I) obey the following
bounds:

∣∣H (Sk |Ak−1)ρ′ − H (Sk |Ak−1)ρ
∣∣

� 2ν log
(
dSk

)+ (1 + ν) h
(

ν

1 + ν

)
, (G11a)

∣∣H (Sk+1 |Bk+2)ρ′ − H (Sk+1 |Bk+2)ρ
∣∣

� 2ν log
(
dSk+1

)+ (1 + ν) h
(

ν

1 + ν

)
, (G11b)

and
∣∣H (SkSk+1 |Ak−1Bk+2)ρ′ − H (SkSk+1 |Ak−1Bk+2)ρ

∣∣

� 2ν log
(
dSk dSk+1

)+ (1 + ν) h
(

ν

1 + ν

)
. (G11c)
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Therefore,
∣∣I (Ak : Bk+1)ρ′ − I (Ak : Bk+1)ρ

∣∣

� 2ν log
(
d2

Sk
d2

Sk+1

)+ 3(1 + ν) h
(

ν

1 + ν

)

= 8ν log(2)+ 3(1 + ν) h
(

ν

1 + ν

)
. (G12)

The equality follows because Sk and Sk+1 are qubits: dSk =
dSk+1 = 2. Moreover, each term in (I) can vary by at most
the range of the term’s corresponding conditional entropy,
so

∣∣I (Ak : Bk+1)ρ′ − I (Ak : Bk+1)ρ
∣∣

� 2 log
(
dSk

)+ 2 log
(
dSk+1

)+ 2 log
(
dSk dSk+1

)

= 2 log
(
d2

Sk
d2

Sk+1

) = 8 log(2). (G13)

Combining Eqs. (G8), (G12), and (G13) yields

∣∣E(ρ ′)− E(ρ)
∣∣ � 1

n − 1

min
{

8 log(2), 8ν log(2)+ 3(1 + ν) h
(

ν

1 + ν

)}
.

(G14)

�

It is convenient to define the worst-case upper bound in
Eq. (G4) among all the gates in G . Namely, let

μ(G ) := 1
n − 1

min
{

8 log(2), 8νG log(2)+ 3(1 + νG ) h
(

νG

1 + νG

)}
,

where νG := sin
(

min
{

e(G ),
π

2

})
. (G15)

By definition,μ(G ) always satisfiesμ(G ) � 8 log(2)/(n −
1).

Theorem 8 (Entanglement bound on the complexity
entropy). Let ρ denote any quantum state of S. Let r � 0
and η ∈ (0, 1]. It holds that

H r, η
H (ρ) � 1

η
[E(ρ)− rμ(G )+ H(ρ)

−2h(η)− (1 − η) n log(2)] − 2 log(η). (G16)

The h(x) := −x log(x)− (1 − x) log(1 − x) denotes the
binary entropy function, and H r, η

H is defined with respect
to Mr.

Proof. Consider any ζ > 0. There exists a Q ∈ Mr such
that tr(Qρ) � η and log ( tr(Q)/ tr(Qρ)) � H r, η

H (ρ)+ ζ .
Q = U†PU for some effect P ∈ Mr=0 and for some uni-
tary U satisfying CG (U0) � r. Let ρ ′ := UρU†. tr(Pρ ′) =
tr(Qρ) � η, so P is a candidate for the H r=0, η

H (ρ ′) opti-
mization:

H r=0, η
H (ρ ′) � log

(
tr(P)

tr(Pρ ′)

)
= log

(
tr(Q)

tr(Qρ)

)

� H r, η
H (ρ)+ ζ . (G17)

For all j ∈ {1, 2, . . . , n − 1}, we write, for short, Aj :=
S1S2 . . . Sj and Bj+1 := Sj+1Sj+2 . . . Sn. Since every POVM
effect in Mr=0 is tensor-product, Proposition 18 implies
that, for all j ,

H r=0, η
H (ρ ′) = −Dr=0, η

H (ρ ′ ‖1S) � −Dη
H(ρ

′
Aj

‖1Aj )

− Dη
H(ρ

′
Bj+1

‖1Bj+1). (G18)

Consequently,

H r=0, η
H (ρ ′)

� 1
n − 1

n−1∑
j=1

[
−Dη

H(ρ
′
Aj

‖1Aj )− Dη
H(ρ

′
Bj+1

‖1Bj+1)
]
.

(G19)

By Proposition 4.67 of Ref. [88], one can bound each
hypothesis-testing relative entropy in Eq. (G19) in terms of
a standard (Umegaki) quantum relative entropy: for each
Aj ,

− Dη
H(ρ

′
Aj

‖1Aj )

� −1
η

[
D(ρ ′

Aj
‖1Aj )+ h(η)+ (1 − η) log ( tr(1Aj ))

]

− log(η)

= 1
η

[
H
(
ρ ′

Aj

)− h(η)− j (1 − η) log(2)
]
− log(η).

(G20)

Similarly, for each Bj+1,

− Dη
H(ρ

′
Bj+1

‖1Bj+1)

� 1
η

[
H
(
ρ ′

Bj+1

)− h(η)− (n − j )(1 − η) log(2)
]

− log(η). (G21)
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Thus,

H r, η
H (ρ)+ ζ � H r=0, η

H (ρ ′)

� 1
n − 1

n−1∑
j=1

{
1
η

[
H
(
ρ ′

Aj

)+ H
(
ρ ′

Bj+1

)− 2h(η)− (1 − η) n log(2)
]
− 2 log(η)

}

= 1
η

⎧
⎨
⎩

1
n − 1

n−1∑
j=1

[
I (Aj : Bj+1)ρ′ + H

(
ρ ′)]− 2h(η)− (1 − η) n log(2)

⎫
⎬
⎭− 2 log(η)

= 1
η

[
E(ρ ′)+ H(ρ ′)− 2h(η)− (1 − η) n log(2)

]− 2 log(η)

� 1
η

[E(ρ)− rμ(G )+ H(ρ)− 2h(η)− (1 − η) n log(2)] − 2 log(η). (G22)

The first and second equalities follow from the definitions
(G2) and (G3), respectively. The last inequality follows
because E(ρ ′)− E(ρ) � −rμ(G ), by Theorem 7, and
because H(ρ ′) = H(ρ), since the von Neumann entropy is
unitarily invariant. Finally, Eq. (G22) implies Eq. (G16),
since ζ is arbitrary. �

APPENDIX H: BOUNDS FROM SHORT-TIME
HAMILTONIAN DYNAMICS

Here, we apply the bounds in Appendix G to short-time
Hamiltonian dynamics. We consider a nearest-neighbor
Hamiltonian H acting on a 1D chain S of n � 2 qubits.
The chain is initially in a state ρ. We show that the
entanglement measure E(ρ) can grow only slowly in time.

Corollary 4 (Continuity bound on E(ρ) under local
Hamiltonian evolution). Let ρ denote any quantum state
of S. Let H denote a nearest-neighbor, translationally
invariant Hamiltonian governed by local-interaction terms
h that can act on only two qubits at a time. It holds that

d
dt

∣∣E(
e−iHtρeiHt)− ρ

∣∣ � C(n − 1)‖h‖, (H1)

for some universal constant C > 0.

Proof. The Hamiltonian has the form

H =
n−1∑
j=1

τj (h), (H2)

wherein h denotes a fixed interaction term that acts non-
trivially only on two neighboring qubits in S. For all
j ∈ {1, 2, . . . , n − 1}, τj is the shift operator that places
τj (h) onto qubits j and j + 1. By the Trotter formula, it
is manifest that for suitably small times t > 0, e−iHtρeiHt

can be arbitrarily well approximated by a brickwork cir-
cuit involving nearest-neighbor quantum gates, even for
noncommuting τj (h) for different j . For each cut speci-
fied by j , the small incremental entangling bound for the
von-Neumann entropy [27,141] gives

d
dt

I(S1 . . . Sj : Sj+1 . . . Sn)ρ � C‖h‖. (H3)

Summing this inequality over all cuts yields Eq. (H1). The
constant C is proven in Ref. [141] to be C = 22 log(2). The
2 originates from the qubits’ local dimension. In numeri-
cal studies, it is found to be rather tightly given by C =
22 log(2). �

The linear growth of E(ρ) in time is tight, in the sense
that there exist local nearest-neighbor Hamiltonians that
exhibit such growth for suitably short times. This claim
largely follows from the results of Ref. [142], which
build on those in Ref. [143]. Intuitively speaking, the
linear growth originates from a light-cone-like entangle-
ment dynamics governed by Lieb-Robinson bounds. For
free bosons and fermions (called noninteracting bosons
and fermions in this context), such bounds are readily
computable.

Corollary 5 (Lower bound on E(ρ) under local Hamil-
tonian evolution). Let ρ denote any quantum state of S.
There exist local Hamiltonians and product initial condi-
tions ρ, with E(ρ) = 0, such that

E
(
e−iHtρeiHt) � (n − 1)

[
4

3π
− 1

2
log(t)− 1

]
. (H4)

Proof. Let S consist of an odd number n � 21 of
qubits. Let H be the Ising Hamiltonian with peri-
odic boundary conditions. Let the initial state be ρ =
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|1, 1, . . . , 1〉〈1, 1, . . . , 1|, so that E(ρ) = 0. The time-
evolved state is ρ(t) = e−iHtρeiHt. For this state, bounds
on entanglement entropies for sufficiently large subsys-
tems are known. Since we consider only bipartite cuts of S,
the subsystem of length L considered in Ref. [142] always
satisfies L = (n − 1)/2. Hence, the constraint L � 10 is
always satisfied. It follows from Theorem 1 in Ref. [142],
applied to the n − 1 cuts of S, that

E(ρ(t)) � (n − 1)
[

4
3π

− 1
2

log(t)− 1
]

. (H5)

�

APPENDIX I: RECOVERING THE
HYPOTHESIS-TESTING (RELATIVE) ENTROPY

AT HIGH COMPLEXITIES

Consider an “unrestricted” agent who can render POVM
effects of arbitrarily high complexities. In this Appendix,
we formulate conditions under which the complexity
entropy approximates the hypothesis-testing entropy. We
first identify the set of measurements that an unrestricted
agent can render with arbitrary precision.

Definition 20 (POVM effects accessible with unbounded
complexity). Let {Mr} denote any family of POVM-effect-
complexity sets (Definition 6). The set of POVM effects
accessible with unbounded complexity is

M∞ :=
⋃
r�0

Mr. (I1)

The A denotes the topological closure of a set A.

Definition 21 (“Complexity-unrestricted” entropy and
relative entropy). Let M∞ denote any set of POVM effects
defined by Eq. (I1). Let ρ denote any subnormalized
state; and �, any positive-semidefinite operator. Let η ∈
(0, tr(ρ)]. We define the “complexity-unrestricted” rela-
tive entropy D∞, η

H (ρ ‖�) by replacing Mr with M∞ in the
definition of Dr, η

H (ρ ‖�) (Definition 13). The “complexity-
unrestricted” entropy is H∞, η

H (ρ) := −D∞, η
H (ρ ‖1).

If M∞ contains all POVM effects, we recover the
hypothesis-testing (relative) entropy exactly: H∞, η

H (ρ) =
H η

H(ρ) [D∞, η
H (ρ ‖�) = Dη

H(ρ ‖�)]. Yet, for many natu-
ral families {Mr} of POVM-effect-complexity sets, M∞
contains only a limited portion of all POVM effects.
For instance, let C denote a unitary-complexity measure
(Definition 3), and let P denote a set of simple POVM
effects (Definition 7) consisting only of projectors. Sup-
pose that

{
Mr

} = {
Mr(P, C)

}
, as per Eq. (B15). Since

every unitary transformation maps projectors to projectors,

M∞ is a set of projectors and therefore excludes almost all
POVM effects.

However, even when limited in form, M∞ may con-
tain enough effects to ensure that H r, η

H (ρ) converges to a
value near H η

H(ρ) as r → ∞. We now formulate condi-
tions under which H∞, η

H (ρ) [D∞, η
H (ρ ‖�)] lies close to the

hypothesis-testing (relative) entropy, H η
H(ρ) [Dη

H(ρ ‖�)].

Definition 22 (q-quasiuniversal sets of POVM effects).
Let q � 0, and let � denote any positive-semidefinite oper-
ator. Let M∞ denote any set of POVM effects defined by
Eq. (I1). M∞ is q-quasiuniversal with respect to � if, for
all POVM effects Q with ‖Q‖ = 1 and for all probabil-
ity weights g ∈ (0, 1), there exist accessible effects Q̃, Q̃′ ∈
M∞ such that

gQ̃ � Q � (1 − g)Q̃′ + g1 (I2a)

and log ( tr(Q̃′�))− log ( tr(Q̃�)) � q. (I2b)

Consider any Q with ‖Q‖ = 1. Whenever M∞ is quasiu-
niversal (for any q), one can “underestimate” Q by forming
a convex mixture from an accessible effect Q̃ ∈ M∞ and
the trivial effect 0. Similarly, one can “overestimate” Q by
mixing an accessible Q̃′ and the trivial effect 1. One can
estimate Q with such mixtures, no matter the mixing proba-
bility g. The variable g continuously parametrizes inequal-
ities that approach 0 � Q � Q̃′ as g → 0 and Q̃ � Q � 1

as g → 1. These boundaries provide intuition about the
parametrization: as one requirement (that Q̃ lower-bound
Q) tightens, the other requirement (that Q̃′ upper-bound Q)
relaxes and vice versa. We exclude the probability weight
g = 0 (g = 1) to avoid trivializing the role of Q̃ (Q̃′).

The estimations Q̃ and Q̃′ lie close to Q because they
lie close to one another, by condition (I2b): their candi-
date hypothesis-testing-entropy values log ( tr(Q̃�)/η) and
log ( tr(Q̃′�)/η) differ by � q for every error intolerance
η ∈ (0, 1]. Without Eq. (I2b), one might trivially satisfy
Eq. (I2a) with Q̃ = 0 and Q̃′ = 1. Finally, as expected, M∞
is q-quasiuniversal for every q and with respect to every �,
whenever the set contains all POVM effects. In this case,
one can choose Q̃ = Q̃′ = Q ∈ M∞.

The hypothesis-testing (relative) entropy bounds the
complexity-unrestricted (relative) entropy from above and
below.

Theorem 9 (Recoverability of the hypothesis-testing
entropy). Let ρ denote any subnormalized state; and �,
any positive-semidefinite operator. Let M∞ denote any set
of POVM effects defined by (I1). Let q � 0, η ∈ (0, tr(ρ)],
and g ∈ (0, 1). Suppose that M∞ is q-quasiuniversal with
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respect to � (Definition 22). Then

Dη
H(ρ ‖�) � D∞, η

H (ρ ‖�) � Dηg
H (ρ ‖�)− q

− log
(

tr(ρ)
gη

)
, (I3)

wherein ηg := (1 − g)η + g tr(ρ) � η. If M∞ is q-
quasiuniversal with respect to 1, then

H η
H(ρ) � H∞, η

H (ρ) � H ηg
H (ρ)+ q + log

(
tr(ρ)
gη

)
. (I4)

Proof. The Dη
H(ρ ‖�) optimization ranges over all

POVM effects, while the D∞, η
H (ρ ‖�) optimization

ranges over only effects in M∞. Therefore, Dη
H(ρ ‖�) �

D∞, η
H (ρ ‖�). Now, we prove the second inequality in Eq.

(I3). Let Q denote an optimal POVM effect for Dηg
H (ρ ‖�)

in Eq. (C4). Without loss of generality, ‖Q‖ = 1, since
we could otherwise replace Q by another candidate Q′ :=
Q/‖Q‖ � Q that achieves the same objective value as
Q. Moreover, tr(Qρ) � ηg and tr(Q�)/ tr(Qρ) = exp (−
Dηg

H (ρ ‖�)). Since M∞ is q-quasiuniversal, some Q̃, Q̃′ ∈
M∞ satisfy the conditions (I2). Condition (I2a) implies that

(1 − g) tr(Q̃′ρ) � tr(Qρ)− g tr(ρ) � ηg − g tr(ρ)

= (1 − g)η. (I5)

Equivalently, tr(Q̃′ρ) � η. Therefore, Q̃′ is a candidate for
the D∞, η

H (ρ ‖�) optimization in Eq. (D1), so

D∞, η
H (ρ ‖�) � − log

⎛
⎝ tr

(
Q̃′�

)

tr
(

Q̃′ρ
)
⎞
⎠ � − log

⎛
⎝ tr

(
Q̃′�

)

η

⎞
⎠

� − log

⎛
⎝eq

tr
(

Q̃�
)

η

⎞
⎠ � − log

(
tr(Q�)

gη

)
− q

� − log
(

tr(Q�)
tr(Qρ)

tr(ρ)
gη

)
− q

= Dηg
H (ρ ‖�)− q − log

(
tr(ρ)
gη

)
. (I6)

The third inequality holds because tr(Q̃′�) � eq tr(Q̃�),
by condition (I2b). The fourth inequality follows from
condition (I2a); the fifth from tr(Qρ) � tr(ρ). �

We now provide an example of quasiuniversal set that
arises naturally in quantum computation.

Proposition 31 (Example of q-quasiuniversal set). Let
G denote any set of unitary gates that is universal for quan-
tum computation. Let CG be the unitary-circuit-complexity

measure associated with G (Definition 2). Let P denote
a set of simple POVM effects (Definition 7) that con-
sists only of projectors and contains at least one rank-1
projector. Let

{
Mr = Mr(P, CG )

}
denote the family of

POVM-effect-complexity sets defined by Eq. (B15). Let
M∞ denote the set of POVM effects defined in Eq. (I1),
and assume that the effects in M∞ act on a Hilbert space of
dimensionality d. M∞ is q-quasiuniversal with respect to
1 (Definition 22). The q denotes the largest gap within the
set X := {log ( tr(P)) : P ∈ P} ⊂ [0, log(d)]:

q := sup
{|b − a| : (a, b) ⊂ [0, log(d)] \ X

}
. (I7)

q is the greatest length of any interval (a, b) ⊂ [0, log(d)]
disjoint from X .

Proof. Let Q denote any POVM effect with ‖Q‖ =
1. Let us fix a matrix representation of Q that is
diagonal and has decreasing diagonal elements: Q =
diag(λ1, λ2, . . . , λd), with 1 = λ1 � λ2 � . . . � λd � 0.
Consider any g ∈ (0, 1), and let �g := max{i : λi � g}
denote the number of Q eigenvalues not less than g. �g
satisfies 1 � �g � d, since λ1 = 1 � g. Let

�−g := max
{
rank(P) : P ∈ P, rank(P) � �g

}
and

�+g := min
{
rank(P) : P ∈ P, rank(P) � �g

}
. (I8)

As per the definitions of �−g and �+g , there exist pro-
jectors P̃, P̃′ ∈ P such that rank(P̃) = �−g and rank(P̃′) =
�+g . Moreover, 1 � �−g � �+g � d, since P contains both
a rank-1 projector and 1. Let U denote a unitary such
that Q̃ = U† P̃ U is diagonal: Q̃ = diag(1, . . . , 1, 0, . . . , 0),
with rank(Q̃) = �−g . Likewise, let U′ denote a unitary such
that Q̃ = U′† P̃′ U′ is diagonal, with rank(Q̃′) = �+g . By
assumption, U and U′ are arbitrarily well approximated
by unitaries of finite complexity, so Q̃, Q̃′ ∈ M∞. We now
show that Q̃ and Q̃′ satisfy the conditions (I2) in the
definition of a q-quasiuniversal set.

Consider the operator gQ̃. The first �g � �−g diagonal
entries of gQ̃ do not exceed g and, hence, do not exceed the
first �g diagonal entries of Q. Moreover, the last �g diago-
nal entries of gQ̃ equal 0 and, hence, do not exceed the last
�g diagonal entries of Q. Thus, gQ̃ � Q. Now, consider
the operator (1 − g)Q̃′ + g1. The first �g � �+g diagonal
entries of (1 − g)Q̃′ + g1 equal 1 and, hence, are not less
than the first �g diagonal entries of Q. Moreover, the last
�g diagonal entries of gQ̃ are not less than g and, hence,
are not less than the last �g diagonal entries of Q. Thus,
Q � (1 − g)Q̃′ + g1. As such, Q̃ and Q̃′ satisfy condition
(I2a).

Compare the definitions of �−g and �+g . There
exists no projector P ∈ P such that �−g < rank(P) <
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�+g . Accordingly, the interval ( log(�−g ), log(�+g )) is dis-
joint from X . [If �−g = �+g , then ( log(�−g ), log(�+g )) =
∅ by convention.] Thus, log ( tr(Q̃′))− log ( tr(Q̃)) =
log(�+g )− log(�−g ) � q, with q defined as in Eq. (I7), so
Q̃ and Q̃′ satisfy condition (I2b). �

APPENDIX J: DATA COMPRESSION UNDER
COMPLEXITY LIMITATIONS

Here, we establish optimal protocols for data compres-
sion under complexity limitations. We thereby prove the
bounds (50) in Sec. V E.

Let ρ denote any state, and C any unitary-complexity
measure, of n qubits. Let r � 0. Let m � n denote a num-
ber of qubits; and ε ∈ [0, 1), an error parameter. We define
an (m, r, ε)–data-compression protocol as a unitary U that
satisfies C(U) � r and that can compress ρ into m qubits.
The compression succeeds if the other n − m qubits end
in a state ε-close to |0n−m〉 in fidelity: there exists a subset
W ⊂ {1, 2, . . . , n} of qubits such that |W | = m and

tr ( trW (UρU†) |0n−m〉〈0n−m|) � 1 − ε. (J1)

We first prove that some protocol compresses ρ into a
number of qubits proportional to the reduced complexity
entropy (Definition 16).

Theorem 10 (Achievability of data compression). Let ρ
denote any state, and C any unitary-complexity measure
(Definition 3), of n qubits. Let P denote the set of simple
POVM effects (Definition 7) defined in Eq. (10). Let r �
0 and ε ∈ [0, 1). Let Mr = Mr(P, C) denote the POVM-
effect-complexity set defined in Eq. (B15). There exists an
(m, r, ε)–data-compression protocol for ρ such that

m = 1
log(2)

H r, 1−ε
h (ρ). (J2)

The reduced complexity entropy H r, 1−ε
h is defined with

respect to Mr.

The above theorem can be reformulated in terms of the
complexity entropy H r, 1−ε

H (ρ). Proposition 22 shows that
the reduced complexity entropy H r, 1−ε

h (ρ) differs from the
complexity entropy H r, 1−ε

H (ρ) by at most log(1/[1 − ε]).
Combining this fact with Theorem 10 yields the bounds
(50) in Sec. V E. If ε ≈ 0, then the optimal number of
qubits in Eq. (J2) is approximately proportional to the
complexity entropy: m ≈ H r, 1−ε

H (ρ)/ log(2).
We further prove that the protocol in Theorem 10 is

optimal.

Theorem 11 (Optimality of data compression). Let ρ
denote any state of n qubits. Let r � 0 and ε ∈ [0, 1). Let

Mr denote a POVM-effect-complexity set as in Theorem
10. Every (m, r, ε)–data-compression protocol satisfies

m � 1
log(2)

H r, 1−ε
h (ρ). (J3)

The reduced complexity entropy H r, 1−ε
h is defined with

respect to Mr.

The above data-compression problem maps directly
onto the thermodynamic-erasure problem in Sec. III A. The
proofs of Theorems 10 and 11 are closely related to the
arguments in Sec. III A and to the proof of Theorem 5.

Proof of Theorem 10. Consider any ζ > 0. There exists
a Q ∈ Mr such that tr(Qρ) � 1 − ε and log ( tr(Q)) �
H r, 1−ε

h (ρ)+ ζ . Q = U†PU for some unitary U satisfying
C(U) � r and for some simple POVM effect P acting as 12
on every qubit in a subset W ⊂ {1, 2, . . . , n} and as |0〉〈0|
on every other qubit. Without loss of generality, assume
that W consists of the first m := |W | of the n qubits. Hence
P = 1⊗m

2 ⊗ |0n−m〉〈0n−m|.
U is an (m, r, ε)–data-compression protocol for ρ, since

C(U) � r and condition (J1) holds:

tr ( trW (UρU†) |0n−m〉〈0n−m|)
= tr([UρU†] [1⊗m

2 ⊗ |0n−m〉〈0n−m|])
= tr([UρU†] P) = tr(Qρ)

� 1 − ε. (J4)

Moreover,

m = log2 ( tr(P)) = log2 ( tr(Q))

= 1
log(2)

log ( tr(Q)) � 1
log(2)

(
H r, 1−ε

h (ρ)+ ζ
)

,

(J5)

which implies Eq. (J2), since ζ is arbitrary. �

Proof. Let U denote any (m, r, ε)–data-compression
protocol for ρ. By definition, there exists a subset W ⊂
{1, 2, . . . , n} such that |W | = m and condition (J1) holds.
Without loss of generality, assume that W consists of
the first m of n qubits. Let P := 1⊗m

2 ⊗ |0n−m〉〈0n−m| and
Q := U†PU. By construction, Q is in Mr and satisfies

tr(Qρ) = tr(P UρU†)

= tr ( trW (UρU†) |0n−m〉〈0n−m|) � 1 − ε. (J6)
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Q is therefore a candidate for the H r, 1−ε
h (ρ) optimization,

so

m = |W | = log2 ( tr(P)) = log2 ( tr(Q))

� 1
log(2)

H r, 1−ε
h (ρ). (J7)

�

APPENDIX K: DECOUPLING FROM A
REFERENCE SYSTEM

Here, we prove the decoupling bound of Theorem 4. Our
proof relies on the following conjectured property of the
complexity conditional entropy.

Conjecture 2. Let A, B, and R denote distinct quantum
systems. Let ρABR denote any state of ABR. Let r � 0 and
η ∈ (0, 1]. It holds that

H r, η
H (B |R)ρ � H r, η

H (AB |R)ρ + log(dA). (K1)

Equivalently,

Dr, η
H (ρBR ‖πB ⊗ ρR) � Dr, η

H (ρABR ‖πAB ⊗ ρR)

− 2 log(dA). (K2)

The equivalence between Eqs. (K1) and (K2) holds
because H r, η

H (B |R)ρ = log(dB)− Dr, η
H (ρBR ‖πB ⊗ ρR) and

because H r, η
H (AB |R)ρ = log(dAdB)− Dr, η

H (ρABR ‖πAB ⊗
ρR), by the argument in Eq. (D78). Equation (K1) mir-
rors a known inequality for the von Neumann conditional
entropy H (AB |R)ρ . The latter inequality follows from a
chain rule and the lower bound H (A |BR)ρ � − log(dA):

H (B |R)ρ = H (AB |R)ρ − H (A |BR)ρ � H (AB |R)ρ
+ log(dA). (K3)

Theorem 12 (Upper bound on the number of qubits Alice
can decouple under complexity limitations). Let A denote
an n-qubit system, and let R denote a quantum system dis-
tinct from A. Let ρAR denote any state of AR. Let P = PAR
denote any set of simple POVM effects (Definition 7); and
C = CAR, any adjoint-invariant unitary-complexity mea-
sure (Definition 3). Let

{
Mr = Mr(P, C)

}
denote the fam-

ily of POVM-effect-complexity sets defined by Eq. (B15).
Let r0 � 0 and r1 � r0. Let η ∈ (0, 1] and δ ∈ (0, 1]. Let
U0 denote any unitary on A satisfying C(U0) � r0. Let
A1 denote a subsystem of k � 0 qubits in A; and A2, the

subsystem of the other n − k qubits. Let

ρ ′
AR := (U0 ⊗ 1R)ρAR(U0 ⊗ 1R)

†. (K4)

Suppose that

Dr1, η
H (ρ ′

A2R ‖πA2 ⊗ ρR) � − log
(
δ

η

)
, (K5)

wherein Dr1, η
H is defined with respect to Mr1 . Assume

Conjecture 2 holds. It holds that

k � 1
2

[
n − 1

log(2)
H r1−r0, η

H (A |R)ρ + log2

(
δ

η

)]
, (K6)

wherein H r1−r0, η
H (A |R) is defined with respect to Mr1−r0 .

Proof. The following chain of inequalities implies (K6):

− log
(
δ

η

)
� Dr1, η

H (ρ ′
A2R ‖πA2 ⊗ ρR)

= log
(
dA2

)− H r1, η
H (A2 |R)ρ′

� log
(
dA2

)− H r1, η
H (A |R)ρ′ − log

(
dA1

)

= (n − 2k) log(2)− H r1, η
H (A |R)ρ′

� (n − 2k) log(2)− H r1−r0, η
H (A |R)ρ . (K7)

The first equality follows by the argument in Eq. (D78);
the second inequality, by the assumption that Conjecture 2
holds; and the last inequality, by Proposition 17. �
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