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Gambling agencies forbid late bets, placed after the winning horse crosses the finish line. A time-
traveling gambler could cheat the system. We construct a gamble that one can win by simulating
time travel with experimentally feasible entanglement manipulation. Our gamble echoes a common
metrology protocol: A gambler must prepare probes to input into a metrology experiment. The
goal is to infer as much information per probe as possible about a parameter’s value. If the input is
optimal, the information gained per probe can exceed any value achievable classically. The gambler
chooses the input state analogously to choosing a horse. However, only after the probes are measured
does the gambler learn which input would have been optimal. The gambler can “place a late bet”
by effectively teleporting the optimal input back in time, via entanglement manipulation. Our
Gedankenexperiment demonstrates that not only true time travel, but even a simulation offers a
quantum advantage in metrology.

Introduction.—The arrow of time makes gamblers, in-
vestors, and quantum experimentalists perform actions
that, in hindsight, are suboptimal. Examples arise in
quantum metrology, the field of using nonclassical phe-
nomena to estimate unknown parameters [1]. The op-
timal input states and final measurements are often
known only once the experiment has finished [2]. Be-
low, we present a Gedankenexperiment that circumvents
this problem via quantum simulation of backward time
travel.

A common metrological goal is to estimate the strength
of a weak interaction between a system in a state |φ〉 and
a probe in a state |ψ〉. The interaction strength can be
estimated from the data from several measured probes.
Upon measuring probes at too high an intensity, detec-
tors can saturate—cease to function until given time to
reset. Reducing the number of probes measured is there-
fore often advantageous [3–9]. In such situations, one
can utilize weak-value amplification to boost the rate of
information obtained per measured probe [3–6, 10–12].
In weak-value amplification, the system is initialized in
a state |φi〉, the system interacts with the probe, and
then the system is measured. If and only if the mea-
surement outcome corresponds to |φf〉, the probe is mea-
sured. Successful pre- and postselection guarantees that
the probe carries a large quantity of information. Weak-
value amplification stems from genuine nonclassicality, as
reviewed below [13–15]. The nonclassicality originates in
the postinteraction measurement, as well as the initial-
ization, and so has sparked discussions about chronology-
violating physics [16, 17].

Chronology-violating physics includes also closed time-
like curves (CTCs) [18–24]. A CTC is a spacetime world-
line that loops backward in time (Fig. 1). Particles
that follow CTCs can travel backward in time with re-
spect to chronology-respecting observers. Although al-
lowed by general relativity, CTCs lead to logical para-

FIG. 1. Examples of chronology-violating particles traversing
CTCs. ρcv denotes such particles’ states. Time t, experi-
enced by a chronology-respecting observer, runs from bottom
to top. The time-traveling particle experiences time T . (a)
Closed loop. (b) ρcv returns to its past and then travels for-
ward in time again. (c) CTC interpretation of the successful
trials of our Gedankenexperiment. ρcv is created at T1 and
travels forward in time until T2. Then, it reverses temporal
direction and travels backward in time until reaching T3. Af-
ter that, it again travels forward in time. ρcv then interacts
with a chronology-respecting state, ρcr, and is subsequently
destroyed, prior to ρcv’s creation (T1). For comparison, the
inset (d) depicts the standard teleportation, across space, of
a quantum state needed as input for an interaction.

doxes. A famous example is the grandfather paradox :
A time traveler travels back in time to kill her grand-
father, before he fathers any children, such that the
time traveler could never have been born. . . Such incon-
sistency characterizes classical CTCs. Two competing
theories resolve such paradoxes, self-consistently reconcil-
ing general-relativistic CTCs with quantum theory [20–
26]. We use the theory of postselected CTCs (PCTCs),
motivated by the postselection in weak-value amplifica-
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tion. Quantum states traversing PCTCs are equivalent to
states undergoing postselected quantum circuits [23, 24].

In this work, we show that quantum simulations of
PCTCs can effectively send useful states from the fu-
ture to the past, providing access to nonclassical phe-
nomena in quantum metrology. We propose a weak-
value-amplification Gedankenexperiment for estimating
the strength of an interaction between a system and a
probe. The figure of merit, motivated by detector satu-
ration, is the amount of information obtained per probe.
As mentioned earlier, this rate can be nonclassically large
if some probes are discarded conditionally on an ear-
lier measurement of the system. But this information
distillation requires that the system be initialized in a
specific state. In our Gedankenexperiment, the opti-
mal input state is unknown until after the system has
been measured. We circumvent this challenge via quan-
tum simulation of backward time travel: One can effec-
tively teleport the optimal state from the experiment’s
end to its beginning. The simulated time travel some-
times fails, but at no detriment to the figure of merit,
the amount of information gleaned from the remaining
probes. These probes, retained only if the simulated time
travel succeeds, carry amounts of information impossi-
ble to achieve classically. Thus, in weak-value amplifica-
tion, the system can be initialized after the system–probe
interaction—paradoxically, in chronology-respecting the-
ories. Our conceptual results pinpoint a deep connection
between quantum entanglement and retrocausal correla-
tions that enable nonclassical advantages.

Background: Closed timelike curves.—Figure 1 shows
examples of CTCs—spacetime wordlines that loop in the
direction of time. There are two (main) theories of how to
self-consistently describe CTCs quantum mechanically.
The first theory is called Deutsch’s CTCs (DCTCs) [20,
22]. DCTCs conserve a time traveler’s state but not its
correlations (entanglement) with chronology-respecting
systems.

We use a second model: PCTCs [21–26]. Consider
measuring a system that undergoes a PCTC. Whether
the measurement happens before or after the PCTC
does not affect the measurement statistics. Such self-
consistency follows from modeling CTCs with quantum-
teleportation circuits that involve postselection. The
postselection ensures that time-traveling particles pre-
serve their correlations with chronology-respecting sys-
tems.

Quantum circuits with entangled states can effectively
realize PCTCs, as illustrated in Fig. 1. (The word “ef-
fectively” is used because one cannot empirically prove
whether or not time travel actually happened [22].) ∪ de-
picts the creation of a Bell (maximally entangled) state
[27], and ∩ depicts the future postselection onto that
Bell state. In Fig. 1(a), the two entangled particles can
be viewed as the forward-traveling (left) and backward-
traveling (right) parts of one chronology-violating par-
ticle’s worldline. The CTC in Fig. 1(b) can be simu-
lated by a three-qubit quantum circuit for teleportation.

With probability 1/4, teleported qubits appear at the
receiver’s end, without the receiver’s performing any lo-
cal operation [28]. In these events, the teleported qubit
was already at the receiver’s end [21, 23].1 Postselected
on these outcomes, the circuit can be viewed as depicting
one chronology-violating qubit’s worldline. In the qubit’s
rest frame, the qubit is initialized at T1. At T2, it starts
traveling backward according to the laboratory frame,
until reaching the point of its “birth” at T3. At T4, the
qubit reverses its temporal direction again, returning to
traveling forward in time.

Below, we outline a Gedankenexperiment in which
PCTCs can be used to achieve a nonclassical metrological
advantage. But first, we introduce weak-value amplifica-
tion in quantum metrology.

Weak-value amplification for metrology.—We now de-
scribe how to estimate the strength of a weak system–
probe interaction. Weak-value amplification concen-
trates information, boosting the amount of information
obtained per probe.

Using quantum metrology, one infers the value of an
unknown parameter θ by measuring N copies of a state
|Ψθ〉 [1]. Every such procedure implies an estimator θe

of θ. The Cramér-Rao inequality lower-bounds the pre-
cision of every unbiased θe:

Var(θe) ≥ 1

N · Iq(θ|Ψθ)
. (1)

Iq(θ|Ψθ) is the quantum Fisher information, which quan-
tifies the average amount of information learned about θ
per optimal measurement [29]. The quantum Fisher in-
formation has the form

Iq(θ|Ψθ) = 4 〈Ψ̇θ|Ψ̇θ〉 − 4| 〈Ψθ|Ψ̇θ〉 |2, (2)

where ẋ ≡ ∂x/∂θ. For common estimators, Ineq. (1) is
saturated when N is large. The larger Iq(θ|Ψθ) is, the
more precisely one can estimate θ.

In this work, we consider estimating the strength of an

interaction Û(θ) = e−iθΠ̂a⊗B̂/2 between a system qubit
in a state |φ〉A and a probe qubit in a state |ψ〉B . Here,

θ ≈ 0 is the weak coupling strength, and Π̂a ≡ |a〉 〈a|
denotes a rank-1 projector on qubit A’s Hilbert space.
B̂ ≡ |b+〉 〈b+| − |b−〉 〈b−| is a Hermitian operator acting

on qubit B’s Hilbert space, with eigenvalues ±1. Û(θ)

evolves |ψ〉B with a unitary evolution generated by B̂,
conditionally on qubit A’s being in the state |a〉.

To measure the coupling strength θ, we prepare the
system-and-probe state |Ψ0〉A,B ≡ |φ〉A |ψ〉B , evolve

it under Û(θ), and then measure the qubits. An
information-optimal input is |Ψ?

0〉A,B = |a〉A
1√
2
(|b+〉B +

1 A teleportation scheme that takes all possible outcomes into ac-
count, without the receiver’s performing any local operations,
transports an unknown qubit exactly as ineffectively as random
guessing.
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|b−〉B); this state acquires the greatest possible quantum
Fisher information, being maximally sensitive to changes
in θ. The postinteraction state is

|Ψ?(θ)〉A,B ≡ Û(θ) |Ψ?
0〉A,B

= |a〉A
e−iθ/2 |b+〉B + eiθ/2 |b−〉B√

2
. (3)

According to Eq. (2), the average measurement yields
Iq[θ|Ψ?

A,B(θ)] = 1 unit of Fisher information per postin-
teraction state.

Usefully, one can distill much information into few
probes. One measures system A and, conditionally on
the outcome, discards or keeps (postselects) the probe
B. Information distillation is particularly advantageous
if one’s detectors saturate. Then, qubit B merits mea-
suring only if B carries much information [5, 7, 9]. We
now review one such distillation scheme, weak-value am-
plification [3–6, 10–12].

One evolves |Ψw
0 〉A,B ≡ |i〉A

1√
2
(|b+〉B + |b−〉B) un-

der Û(θ), then measures A in the basis {|f〉 , |f⊥〉} [Fig.
2(a)]. If the outcome is A 〈f |, B is measured. If not, B
is destroyed. The postselected state is

|Ψps(θ)〉B = |ψps(θ)〉B /
√
pps
θ , (4)

where |ψps(θ)〉B ≡
(
A 〈f | ⊗ 1̂B

)
Û(θ) |Ψw

0 〉A,B . The

probability of successful postselection is pps
θ ≡

B 〈ψps(θ)|ψps(θ)〉B . A little algebra simplifies the posts-
elected state:

|Ψps(θ)〉B =
e−iθf 〈Π̂a〉i/2 |b+〉B + eiθf 〈Π̂a〉i/2 |b−〉B√

2

+O(θ2), (5)

if |θ ·f 〈Π̂a〉i | � 1. The weak value of Π̂a is f 〈Π̂a〉i ≡
A 〈f | Π̂a |i〉A /A 〈f |i〉A, the “expectation value” of Π̂a pre-
selected on the state |i〉A and postselected on A 〈f |. The
quantum Fisher information [Eq. (2)] of |Ψps(θ)〉B is

Iq [θ|Ψps
B (θ)] =

∣∣∣f 〈Π̂a〉i
∣∣∣2 +O (θ) . (6)

Above, we found that the nonpostselected experi-
ment’s quantum Fisher information, Iq [θ|ΨA,B(θ)], has
a maximum value of 1. The postselected experiment,
however, can achieve a quantum Fisher information
Iq [θ|Ψps

B (θ)] � 1. Weak-value amplification does not
increase the total amount of information gained from all
the probes [30, 31], but distills large amounts of informa-
tion into a few postselected probes.

Such anomalously large amounts of information wit-
ness nonclassical phenomena [7–9]. For small θ, Eq. (6)

excedes 1 if, and only if, the weak value |f 〈Π̂a〉i | > 1,
i.e., the weak value’s magnitude exceeds the maximum
eigenvalue of Π̂a. Such a weak value is called anoma-
lous. Anomalous weak values arise from the quantum

FIG. 2. Circuit diagrams for (a) standard and (b) PCTC-
powered weak-value amplification. Time progresses in the
laboratory’s rest frame as one proceeds upward along the cen-
tral, vertical axis. Black lines represent qubits. Dashed gray
lines represent classical information.

resource contextuality : One can try to model quantum
systems as being in real, but unknown, microstates like
those in classical statistical mechanics. In such a frame-
work, however, operationally indistinguishable quantum
procedures cannot be modeled identically. This impossi-
bility is contextuality [14, 15, 32, 33]. Contextuality is
valuable. It enables weak-value amplification, which re-
duces the intensity of the probes impinging on saturable
detectors, while endowing each detected probe with a
large amount of information.

Metrological quantum advantage via PCTCs.— To per-
form weak-value amplification, an experimentalist needs
to carefully set qubit A’s input state, |i〉A, and final mea-

surement basis, {|f〉A , |f⊥〉A}, such that |f 〈Π̂a〉i | > 1.

Doing so requires knowledge of Π̂a. The goal is to si-
multaneously achieve a small weak-value denominator

A 〈f |i〉A and large numerator A 〈f | Π̂a |i〉A. If Π̂a and
the postselection basis are unknown, achieving the goal
seems impossible.

We overcome this obstacle by combining PCTCs with
postselected metrology. We assume that Π̂a and the post-
selection basis {|f±〉A} are unknown until just after (in
the laboratory’s rest frame) the interaction.2 Can we
nevertheless initialize |φ〉A to take advantage of the con-
textuality? We answer affirmatively, by constructing a
simulated PCTC.

Given a postelection outcome A 〈f±|, we choose the

input state |i±〉A such that |f+ 〈Π̂a〉i+ | = |f− 〈Π̂a〉i− | �

2 These assumptions are unlikely to arise naturally in metrology
but are needed in our Gedankenexperiment.
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1.3 As Π̂a and {|f±〉A} are known only after the inter-
action, we effectively create the input state |φ〉A = |i±〉A
after the interaction has taken place. Then, we simu-
late a PCTC to effectively teleport the state backward in
time, such that |φ〉A serves as an input in the interaction.
Figure 2(b) illustrates our experiment with a quantum
circuit.

In the laboratory’s rest frame, our protocol proceeds
as follows:

t0: • A and C are entangled:

|Φ+〉A,C =
1√
2

(|0〉A |0〉C + |1〉A |1〉C) .

• Qubit B is initialized as

|Ψ〉B =
1√
2

(
|b+〉B + |b−〉B

)
.

t1: • A and B interact via Û(θ) = e−iθΠ̂a⊗B̂/2. The

value of θ and the form of Π̂a = |a〉 〈a| are un-
known.

t2: • The as-yet-unknown, optimal measurement basis
{|f±〉A} is revealed.

• A is measured in this basis.

t3: • Information about Π̂a and about the outcome

A 〈f±| reaches D.

• Qubit D is created and initialized in |i±〉D.

t4: • C and D are measured in the Bell basis [27].

• Outcome C,D 〈Φ+| effectively teleports |i±〉D to
the time-t0 system A.4

t5: • If and only if outcome C,D 〈Φ+| was obtained at
t4, a beam blocker is removed from B’s path.

t6: • If the beam blocker was removed, B is measured

in the
{

1√
2
(|b+〉 ± |b−〉)

}
basis.

The supplementary material presents the mathematical
details behind our protocol’s effectiveness.

Repeated experiments that involve final B measure-
ments produce an anomalously large weak value. It am-
plifies the quantum Fisher information about θ to non-
classically large values. We have thus shown that, in
weak-value amplification, the preselected system state
can effectively be created after the interaction—even af-
ter the state has been measured and destroyed. This

3 In general, 〈i−|i+〉 6= 0.
4 This postselection is onto a copy of the state prepared initially,
|Φ+〉. Therefore, our circuit preserves correlations (between
chronology-violating and chronology-respecting systems) as re-
quired by the definition of PCTCs.

point is visible in Fig. 1(c), a CTC diagram of our pro-
tocol. The inset [Fig. 1(d)] depicts the standard tele-
portation, across space, of a quantum state to be in-
putted into an interaction. The state’s initialization is
postponed, and the state’s destruction is advanced, in
Fig. 1(c). These changes do not affect the chronology-
respecting state’s final form.

One could imagine three objections. First, some
postselections—and so teleportation attempts—fail.
However, these failures do not lower the figure of merit,
the amount of information in the probes that pass the
blocker. As further reassurance: Our setup does not al-
low classical information to be sent to the past. The im-
proved information-per-detection rate is available only at
the end of the experiment.

Second, our assumption about when the information
needed to choose |i±〉 arrives may seem artificial. It
is. However, in most realistic metrology experiments,
the optimal strategy remains unknown until after the
experiment [2]. Furthermore, our study’s purpose is
foundational—to demonstrate the power of quantum-
simulating PCTCs to achieve a quantum advantage.

Third, one might view our experiment as involving a
preselected state |Φ+〉C,A |i±〉D and a postselected state

A 〈f±|D,C 〈Φ+|. Our experiment would show no more
retrocausality than earlier experiments with pre- and
postselection. However, such an interpretation contra-
dicts the definitions of pre- and postselection, as D is
created after A is postselected.

The limit as θ → 0 implies more counterintuitive phe-
nomena. First, B and the rest of the system always re-
main in a tensor-product bipartite state—share no corre-
lations, let alone entanglement. Yet the quantum Fisher
information of B can still be nonclassically large. Fur-
thermore, imagine, in addition to the θ → 0 limit, mea-
suring B between t1 and t2, before any other measure-
ment and before D is initialized. At time t5, one would
postprocess the data from the B measurements. One
would uncover the same contextuality as in conventional
weak-value amplification [Fig. 2(a)]. This conclusion
paradoxically holds even though B is destroyed before
A, C, and D are measured. How? If PCTCs are real
(perhaps probabilistic) effects of quantum mechanics, the
nonclassicality comes from time travel. Without real
PCTCs, the paradox’s resolution depends on entangle-
ment

For comparison: Previous works have addressed the
advantages offered by CTCs [23, 34–42]. For example,
PCTCs would boost a computer’s computational power
[23, 34–36, 38]. (Also classical computers can achieve
such computational power if postselected.) Our metro-
logical protocol differs, posing a paradox even in the ab-
sence of true CTCs: Probabilistically simulating PCTCs
suffices for achieving the nonclassical advantage. Relat-
edly, Svetlichny shows that PCTC simulation can effect
a Bell measurement of a state before the state is cre-
ated [22]. Also, probabilistically simulating DCTCs en-
ables nonorthogonal-state discrimination [43]. However,
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our result differs from these two by entailing that CTC
simulation can enable a truly nonclassical advantage—
one sourced by contextuality—in the past.

Conclusions.—We have shown how simulating time
travel with entanglement benefits the estimation of a cou-
pling strength. A certain “key” input state is needed to
unlock a quantum advantage. However, in our setup, the
ideal input state is known only after the interaction takes
place and the system is measured. We have shown how
simulating quantum time travel allows for the key to be
created at a later time and then effectively teleported
back in time to serve as the experiment’s input. The
time travel can be simulated with postselected quantum-

teleportation circuits. Our Gedankenexperiment thus
draws an metrological advantage from apparantly retro-
causal correlations creatable with quantum circuits and
entangled states. While PCTCs do not allow you to go
back and alter your past, they do allow you to create a
better tomorrow by fixing yesterday’s problems today.
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Appendix A: Figures 2(a) and (b) prepare the same postselected B state

Here, we show that the postselected final state of B in Fig. 2(a) equals that in Fig. 2(b). In the main text, we
showed that the postselected final state of B in Fig. 2(a) is [Eq. (4)]

|Ψps(θ)〉B =
1√
pps
θ

|ψps(θ)〉B (A1)

≡ 1√
pps
θ

(
A 〈f | ⊗ 1̂B

)
e−iθΠ̂a⊗B̂/2 |i〉A |ψ〉B , (A2)

where pps
θ ≡ B 〈ψps(θ)|ψps(θ)〉B and |ψ〉B ≡

1√
2
(|b+〉B + |b−〉B)

We now calculate how the whole-system state evolves throughout our protocol, as described in the main text and
Fig. 2(b). Immediately after t0, the joint state is

|Ψ(t0)〉A,B,C ≡
1√
2

(|0〉A |0〉C + |1〉A |1〉C) |ψ〉B . (A3)

Immediately after t1, the joint state is

|Ψθ(t1)〉A,B,C ≡
(
e−iθΠ̂a⊗B̂/2 ⊗ 1̂C

)
|Ψ(t0)〉A,B,C . (A4)

Immediately after t2, qubit A is measured, yielding an outcome A 〈f±|. The joint state is

|Ψθ(t2)〉B,C ≡
1√
N2

(
A 〈f±| ⊗ 1̂B,C

) (
e−iθΠ̂a⊗B̂/2 ⊗ 1̂C

)
|Ψ(t0)〉A,B,C . (A5)

N2 is a normalization factor. Immediately after t3, the joint state is

|Ψθ(t3)〉B,C,D ≡ |Ψθ(t2)〉B,C |i
±〉D (A6)

=
1√
N2

(
A 〈f±| ⊗ 1̂B,C,D

) (
e−iθΠ̂a⊗B̂/2 ⊗ 1̂C,D

)
|Ψ(t0)〉A,B,C |i

±〉D . (A7)

At t4 qubits C and D are measured in the Bell basis,
{
|Ψ±〉 = 1√

2
(|0〉 |1〉 ± |1〉 |0〉) , |Φ±〉 = 1√

2
(|0〉 |0〉 ± |1〉 |1〉)

}
.

At t5, B is discarded unless the Bell measurement yielded outcome C,D 〈Φ+|. Immediately after t5, the state is

|Ψθ(t5)〉B ≡
1√
N5

(
1̂B ⊗ C,D 〈Φ+|

)
|Ψ(t3)〉B,C,D (A8)

=
1√
N5

(
A 〈f±| ⊗ 1̂B ⊗ C,D 〈Φ+|

) (
e−iθΠ̂a⊗B̂/2 ⊗ 1̂C,D

)
|Ψ(t0)〉A,B,C |i

±〉D (A9)

=
1√
N5

(
A 〈f±| ⊗ 1̂B ⊗ C,D 〈Φ+|

) (
e−iθΠ̂a⊗B̂/2 ⊗ 1̂C,D

) 1√
2

(|0〉A |0〉C + |1〉A |1〉C) |ψ〉B |i
±〉D . (A10)

N5 is a normalization factor. We can expand the factor |Φ+〉A,C |i±〉 in the Bell basis for C and D:

|Ψθ(t5)〉B =
1√
N5

(
A 〈f±| ⊗ 1̂B ⊗ C,D 〈Φ+|

) (
e−iθΠ̂a⊗B̂/2 ⊗ 1̂C,D

)
|ψ〉B

× 1

2

[
|Φ+〉C,D |i

±〉A + |Φ−〉C,D ẐA |i
±〉A + |Ψ+〉C,D X̂A |i±〉A + |Ψ−〉C,D X̂AẐA |i±〉A

]
. (A11)

X̂ and Ẑ denote Pauli matrices. We simplify the above expression by calculating the inner product with C,D 〈Φ+|:

|Ψθ(t5)〉B =
1√
N5

(
A 〈f±| ⊗ 1̂B

) (
e−iθΠ̂a⊗B̂/2

)
|i±〉A |ψ〉B . (A12)

Choosing the optimal system preparation |ψ〉B = 1√
2
(|b+〉B + |b−〉B) yields N5 = pps

θ . Consequently, |Ψθ(t5)〉B =

|Ψps(θ)〉B , and the circuits preparing the postselected states in Figs. 2(a) and 2(b) are equivalent.
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