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We extend entropy production to a deeply quantum regime involving noncommuting conserved quan-
tities. Consider a unitary transporting conserved quantities (“charges”) between two systems initialized in
thermal states. Three common formulas model the entropy produced. They respectively cast entropy as
an extensive thermodynamic variable, as an information-theoretic uncertainty measure, and as a quantifier
of irreversibility. Often, the charges are assumed to commute with each other (e.g., energy and particle
number). Yet quantum charges can fail to commute. Noncommutation invites generalizations, which we
posit and justify, of the three formulas. The noncommutation of charges, we find, breaks the equivalence of
the formulas. Furthermore, different formulas quantify different physical effects of the noncommutation of
charges on entropy production. For instance, entropy production can signal contextuality—true nonclassi-
cality—by becoming nonreal. This work opens up stochastic thermodynamics to noncommuting—and so

particularly quantum—charges.
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I. INTRODUCTION

Thermodynamics describes the transport of energy and
other quantities between systems that have equilibrated
individually but not with each other. These quantities are
conserved according to principles such as the first law
of thermodynamics. The second law decrees which trans-
port can and cannot occur spontaneously. Over the past
three decades, researchers have revolutionized the study of
transport within microscopic systems, where fluctuations
dominate [1-7].

More-recent results have prompted questions about how
such exchanges occur in quantum systems, which can
have coherences and nonclassical correlations [8—15]. To
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infer about quantum currents, one must measure quantum
systems. But measurement back action can destroy coher-
ences. Thermodynamic processes therefore depend on our
measurements of them. This conundrum has inspired con-
siderable research but no resolution is universally agreed
upon.

Quantum coherences result from the noncommutation
of operators. In classical thermodynamics, the energy and
particle number of a system are commuting quantities;
they can be measured simultaneously. What if the glob-
ally conserved thermodynamic quantities (charges) fail to
commute?

This recently posed question has upended intuitions and
engendered a burgeoning subfield of quantum thermody-
namics [16-49]; for a recent perspective, see Ref. [50].
For example, the noncommutation of charges hinders argu-
ments for the form of the thermal state [20,23] and alters
the eigenstate thermalization hypothesis, which explains
how quantum many-body systems thermalize internally
[35]. Other results span resource theories [20-23,39-41,
43-45], heat engines [38], metrology [51], and a trapped-
ion experiment [27,48]. In the linear-response regime,
noncommuting charges reduce entropy production [28].

We analyze the entropy produced by arbitrarily far-
from-equilibrium exchanges of noncommuting charges.

Published by the American Physical Society
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FIG. 1. Two thermal systems exchanging charges. In a
paradigm ubiquitous across thermodynamics, two systems
locally exchange charges that are conserved globally. The charge
flow produces entropy. During each realization of the process,
each system begins with some amount of every charge (e.g.,
energy and particle number) and ends with some amount. These
amounts define a stochastic trajectory.

Three formulas for entropy production, which equal each
other when all charges commute, have been used widely
[52]. We show that these formulas fail to equal each other
when charges fail to commute. This incommensurability
stems from measurement disturbance: the currents of non-
commuting charges cannot be measured simultaneously.

An example illustrates the key idea. Consider two clas-
sical thermodynamic observables, such as energy and
particle number. Let classical systems A and B begin
in thermal (grand canonical) ensembles: system X = A, B
has energy E* and particle number N* with a prob-
ability o e P*E* "N \where B* denotes an inverse
temperature and ©* a chemical potential. An interaction
can shuttle energy and particles between the systems.
If conserved globally, the quantities are called charges.
Any charge (e.g., particle) entering or leaving a system
produces entropy. The entropy produced in a trial—the
stochastic entropy production (SEP)—is a random vari-
able. Its average over trials is non-negative, according to
the second law of thermodynamics. The SEP obeys con-
straints called exchange fluctuation theorems—tightenings
of the second law of thermodynamics [6]. Classical fluc-
tuation theorems stem from a probabilistic model: sys-
tem A begins with energy E? and with N} particles,
A ends with energy Ef and with NP particles, and B
satisfies analogous conditions, with a joint probability
p(E} NP EP,NP; Eﬁ,Nf,EfB,NfB). We view the progres-
sion (E}, N/, EZ,NP) (EA,N;*,E;?,NfB) as a two-step
stochastic trajectory between microstates (Fig. 1).

In the commonest quantum analogue, quantum sys-
tems X = A,B begin in reduced grand canonical states

oc e B =1*NY)  where H* denotes a Hamiltonian and
N¥ a particle-number operator. In the two-point measure-
ment scheme [4,5], one strongly measures the Hamilto-
nian and particle number of each system. Then, a unitary
couples the systems, conserving H* + H® and N* + NB.
Finally, one measures A*, H®, N?, and N® again [53].
A joint probability distribution governs the four measure-
ment outcomes. Using the outcomes and distribution, one
can similarly define the SEP, prove fluctuation theorems,
and define stochastic trajectories [6]. Each measurement
may, however, disturb the quantum system [12,54,55].
Noncommutation introduces a twist into this story. Let
the above quantum systems exchange charges that fail to
commute with each other. For example, consider qubits

X = A,B exchanging spin components 8fyz. The cor-
responding thermal states are o exp(— ) B jf&jf),

wherein B denotes a generalized inverse temperature
[23,27,35,48]. One cannot implement the two-point mea-
surement scheme straightforwardly, as no system’s 6;3 -
operators can be measured simultaneously. One can mea-
sure the three spin components of each qubit sequentially,
couple the systems with a charge-conserving unitary, and
measure the oy, . of each qubit sequentially again. Yet
these measurements wreak havoc worse than if the charges
commute: they disturb not only the states, but also the
subsequent noncommuting measurements [56].

Weak measurements would disturb the systems less
[57,58], at the price of extracting less information [59]. As
probabilities describe strong-measurement experiments,
quasiprobabilities describe weak-measurement experi-
ments (Appendix A). Quasiprobabilities resemble prob-
abilities—being normalized to 1, for example. They
violate axioms of probability theory, however, such as by
becoming negative. Consider, then, replacing the strong
measurements of the above protocol with weak measure-
ments. We may loosely regard AB as undergoing stochas-
tic trajectories weighted by quasiprobabilities, rather than
probabilities. Levy and Lostaglio have applied quasiprob-
abilities in deriving a fluctuation theorem for energy
exchanges [12]. Their fluctuation theorem contains the
real part of a Kirkwood-Dirac quasiprobability (KDQ)
[58,60—63].

KDQs have recently proven useful across quantum ther-
modynamics [12,57,58,64—67], information scrambling
[64,68—71], tomography [72—78], metrology [79-81], and
foundations [82—87].

When employed as work or heat distributions, KDQs
have multiple desirable properties not achieved by joint
probability distributions [57,58,88,89]

Negative and nonreal KDQs can reflect nonclassical-
ity [82,90] and measurement disturbance [74,91-95]. In
Ref. [12], negative real KDQs signal anomalous heat
currents, which flow spontaneously from a colder to a
hotter system. Generalizing from energy to potentially
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noncommuting charges, our results cover a more fully
quantum setting. They also leverage the ability of the KDQ
to become nonreal.

To accommodate noncommuting charges, we generalize
the SEP. In conventional quantum thermodynamics, three
common SEP formulas equal each other [52]. Entropy is
cast as an extensive thermodynamic variable by a “charge
formula,” as quantifying missing information by a “sur-
prisal formula,” and as quantifying irreversibility by a “tra-
jectory formula.” We generalize all three formulas using
KDQs. If the charges commute, the generalizations reduce
to the usual formulas. The generalizations satisfy four san-
ity checks, including by equaling each other when the
charges commute. Yet we find deductively that noncom-
muting charges break the equivalence, generating three
species of SEP.

The different SEPs, we find, highlight different ways
in which the noncommutation of charges impacts trans-
port:

(1) Charge SEP. The noncommutation of charges
enables individual stochastic trajectories to vio-
late charge conservation. These violations underlie
commutator-dependent corrections to a fluctuation
theorem.

(2) Surprisal SEP. Initial coherences, relative to eigen-
bases of the charges, enable the average surprisal
entropy production to become negative. Such neg-
ativity simulates a reversal of time’s arrow. Across
thermodynamics, a ubiquitous initial state is a prod-
uct of thermal states. Only if the charges fail to com-
mute can such a state have the necessary coherences.
Hence the noncommutation of charges enables a
resource, similar to work, for effectively reversing
time’s arrow in a common setup.

(3) Trajectory SEP. The generalized trajectory SEP can
become nonreal, due to the KDQ. Such nonreality
signals contextuality—a strong form of nonclassi-
cality [96-98]—in a noncommuting-current experi-
ment.

This work opens up the field of stochastic thermo-
dynamics [99] to noncommuting charges. Furthermore,
our work advances the widespread research program of
critically comparing thermodynamic with information-
theoretic entropies and leveraging information theory for
thermodynamics [100—103].

The paper is organized as follows. In Sec. II, we detail
the setup and review background material. In Sec. 111, we
present the three SEP formulas, the physical insights that
they imply, and their fluctuation theorems and averages.
In Sec. IV, we numerically illustrate our main results with
a two-qubit example. In Sec. V, we sketch a trapped-ion
experiment based on our results. Finally, in Sec. VI, we
conclude with avenues for future work.

As a semantic disclaimer and to provide broader con-
text, note that studies of the second law have engendered
debates about what should be called the entropy pro-
duction. We provide an alternative perspective: we show
that three SEP formulas, despite being equivalent in the
commuting case, become inequivalent if charges cease to
commute. Each of these formulas encapsulates a differ-
ent aspect of entropy production. This perspective har-
monizes with demonstrations that, for small systems, the
conventional second law splits into multiple second “laws”
[20,23,104-108].

II. PRELIMINARIES

We specify the physical setup in Sec. IT A. Section 11 B
reviews KDQs; Sec. 11 C, information-theoretic entropies;
and Sec. II D, fluctuation theorems.

A. Setup

Consider two identical quantum systems, A and B.
(From now on, we omit hats from operators.) Each system
corresponds to a copy of a Hilbert space H. The bipartite
initial state p leads to the reduced states p? := Trg(p) and
p® = Tra(p).
assumed to be linearly independent [47]. For X = A, B,
we denote X’s copy of O, by Q. The dynamics will
conserve the global observables Q' := 0% @ 1% + 1* ®

=, so we refer to the Q, as charges. In the commut-
ing case, all the charges commute: [Q,, Oy ] = 0 Vo, '
At least two charges do not in the noncommuting case:
[Ou, O] # 0 for some «,a’. Each charge eigendecom-
poses as Q, = Z/. Aaj Mgj. We denote tensor-product
projectors by I,z = Hi,kA ® Hska, invoking the com-
posite index k = (k*, kB). To simplify the formalism, we
assume that the Q, are nondegenerate, as in Refs. [6,12,
109,110]. Appendix B concerns extensions to degenerate
charges. The nondegeneracy renders every projector rank-
1: My x = lo)ok|. We call the Q' eigenbasis {|oy)}x the
ath product basis.

Having introduced the charges, we can expound upon
the initial state. The reduced states p* are gemeralized
Gibbs ensembles (GGEs) [111-115]

1 c
Pice = 7z ©XP <— 2. ﬂzszi) : M
a=1

B2 denotes a generalized inverse temperature. The parti-
tion function Z* normalizes the state. If the OF fail to
commute, the GGE is often called the non-Abelian thermal
state [23,27,35,48]. Across most of this paper, p equals the
tensor product

péGE ® PCB}GE- (2)
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Such a product of thermal states, being a simple nonequi-
librium state, surfaces across thermodynamics [Sec. 3.6]
[116]. (In Secs. 111 B 2 and 111 C 3, we consider initial states
p that deviate from this form but retain GGE reduced
states.)

Our results stem from the following protocol. Prepare
AB in p. Evolve p under a unitary U that conserves every
global charge:

[U, 0.1 = 0 Va. 3)

U can bring the state arbitrarily far from equilibrium. The
final state, p; = UpU', induces the reduced states ,0}* =
Trg(pr) and ,0}3 := Tra(pr). The average amount of a-type
charge in A changes by A(Q,) := Tr(Q5[pf — p*]); and
the average amount in B, by Tr(Q%[pf — p°]) = —A(Qa).
The generalized inverse temperatures differ by Af, :=

Be = Ba-

B. Kirkwood-Dirac quasiprobability

The relevance of the KDQ stems from the desire to
reason about charges flowing between A and B. One
can ascribe to A some amount of «-type charge only
upon measuring Q. Measuring Q% strongly would dis-
turb A and subsequent measurements of noncommuting
0?2, [56]. Therefore, we consider sequentially measuring
charges weakly. We define the forward protocol by com-
bining the preparation procedure and unitary with weak
measurements (Sec. I1I C introduces a reverse protocol):

(1) Prepare AB in p.

(2) Weakly measure the product basis of O} and OF,
then the product basis of 05 and Q5, and so on
until 0% and OF. (One can implement these mea-
surements using the detector-coupling technique in
Ref. [footnote 9] [68].)

(3) Evolve AB under U.

(4) Weakly measure the product bases of the charges in
the reverse order, from ¢ to 1. (This measurement
ordering ensures that our SEP definitions satisfy
sanity checks described in Sec. II1.)

Lacking strong measurements, this protocol differs qual-
itatively from two-point-measurement schemes. The for-
ward protocol leads naturally to a KDQ, as shown in
Appendix A:

Tr (Ut [T Ty - Ty | UMy, . Ty T, 0)
Sles fesfee1s -5 1) 4)

The list (iy,i,...,0c; fesfe—1,- - -, /1) defines a stochastic
trajectory, as in Sec. I. (Recall the definition, in Sec. II A,
of composite-system indices.) Loosely speaking, we might
view the trajectory as occurring with a joint quasiprobabil-

ityﬁF(il’i23 . )ic ;ﬁﬁAf;'_li AR 9ﬁ)'

=pr(il, i, ..

pr can assume negative and nonreal values. One can
infer pp experimentally by performing the forward pro-
tocol many times, performing strong-measurement exper-
iments, and processing the outcome statistics [64]. The
angle brackets (.) denote averages with respect to pg,
unless we specify otherwise.

Two cases further elucidate pr and the forward protocol:
the commuting case and the weak-measurement limit. In
the commuting case, if p is diagonal with respect to the
shared eigenbasis of the charges, pr is a joint probability.

C. Information-theoretic entropies

We invoke four entropic quantities from informa-
tion theory [117]. Let X = xi,x3,...,x, denote a dis-
crete random variable; P = {pi,p2,...,pn} and R =
{r1,7r2,...,r,}, probability distributions over X; and w;
and w;, quantum states. Suppose that X evaluates to x;.
The surprisal —log (p]) quantifies the information that we
learn. (The logarithms in this paper are base-e.) Averag-
ing the surprisal yields the Shannon entropy, Ssn(P) :=
— > pjlog(p;). The quantum analogue is the von Neu-
mann entropy, Syn(wy) := —Tr(w; log(wy)).

The quantum relative entropy quantifies the distance
between states: D(w]||wz) = Tr(w;[log(w;) — log(wy)]).
D measures how effectively one can distinguish between
w; and w,, on average, in an asymmetric hypothesis test.
D(w;||w) = 0 vanishes if and only if w; = w;.

Analogously, the classical relative entropy distingu-
ishes probability distributions: D(P||R) = Y p; [log(p;)
— log(rj)]. We will substitute KDQ distributions for P
and R in Sec. IIIC 1. The logarithms will be of complex
numbers. We address the branch-cut conventions and the
multivalued nature of the complex logarithm there.

D. Exchange fluctuation theorems

An exchange fluctuation theorem governs two systems
trading charges. (We will drop the exchange from the
name.) Consider two quantum systems initialized and
exchanging energy as in Sec. I, though without the com-
plication of particles. Each trial has a probability p (o)
of producing entropy o. We denote by (-)p averages
with respect to the probability distribution. The fluc-
tuation theorem (e~ ?)p = 1 implies the second-law-like
inequality (o)p > 0 [6]. Unlike the second law, fluctua-
tion theorems are equalities arbitrarily far from equilib-
rium. More-general (e.g., correlated) initial states engender
corrections: (¢ %)p = 1+...[12,110].

III. THREE GENERALIZED SEP FORMULAS

We now present and analyze the generalized SEP for-
mulas: the charge SEP oy (Sec. III A), the surprisal SEP
Osurp (Sec. 1II B), and the trajectory SEP oy, (Sec. IIIC).
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To simplify the notation, we suppress the indices that
identify the trajectory along which an SEP is produced.
Each formula satisfies four sanity checks, as follows.
(1) Each (o) has a clear physical interpretation. (ii) Each
o satisfies a fluctuation theorem (Sec. I1 D). Any correc-
tions depend on the commutators of the charges. (iii) If the
charges commute, all three SEPs coincide. (iv) Suppose
that no current flows: [U, OX] = 0 Va. As expected phys-
ically, the average entropy production vanishes: (o) = 0.
Also, the fluctuation theorems lack corrections: (¢ °) = 1.

A. Charge stochastic entropy production

First, we motivate the definition of the charge SEP
(Sec. IIT A 1). ocprg portrays entropy as an extensive ther-
modynamic quantity (Sec. III A 2). Furthermore, ocyg sat-
isfies a fluctuation theorem, the corrections of which
depend on commutators of the Q, (Sec. III A 3). Correc-
tions arise because noncommuting charges enable individ-
ual stochastic trajectories to violate a “microscopic,” or
“detailed,” notion of charge conservation. [Nevertheless,
charge conservation as defined in Eq. (3) is not violated.]

1. Charge-SEP formula

The fundamental relation of statistical mechanics [118]
motivates the definition of ocyy. In this paragraph, we
reuse quantum notation (Sec. IIA) to denote classical
objects, for simplicity. The fundamental relation gov-
erns large, classical systems X = A, B that have extensive
charges Q% and intensive parameters 8. Let an infinites-
imal interaction conserve each Q) + Q. Since dO}, =
—dQ?, the total entropy changes by

ds*® =" (B2 dQ: + B2 Q) 5)

o

= ABydQ. (6)

According to the second law of thermodynamics, dS*® > 0
during spontaneous processes [119]. We posit that (o)
should assume the form given in Eq. (6). We reverse-
engineer such a formula, using the eigenvalues of the
charges:

Oug = ) [B2 (ot = hait) + B (hasp — hai2)] -

o

(7)
2. Average of charge SEP
By design, the charge SEP averages to
(Oehrg) = D ABa A{Qa). ®)

This average is non-negative, equaling a relative entropy
[52]:

(dehrg) = D(prllp) = 0. ®

This inequality echoes the second-law statement written
just below Eq. (6).

3. Fluctuation theorem for charge SEP

Ochrg Obeys the fluctuation theorem

(e~uhne) = Tr(U' [e*AﬂlQ?‘ .. e*AﬁcQ?] U

X [eAﬂ"Q? ... eAﬁ‘Q?] 0)

+ (¢ — 1 terms dependent on commutators) .

(10)

We prove the theorem and present the form of the correc-
tion in Appendix C 1. Below, we show that the right-hand
side evaluates to 1 in the commuting case. In the noncom-
muting case, corrections arise from two physical sources:
(i) p® and p® are non-Abelian thermal states. (ii) Individual
stochastic trajectories can violate charge conservation.

In the commuting case, the first term in Eq. (10) equals
1. The reason is that, in p = pGge ® PEGEs €ach PigE X
exp (— X, BEO%) o [], exp(—B;0O%). The A exponen-
tials cancel the e/ factors in Eq. (10). No such can-
cellation occurs in the noncommuting case, since pige %
[1, exp(—BZQ%). The first term in Eq. (10) can there-
fore deviate from 1, quantifying the noncommutation of
charges in pigg-

The second term vanishes in the commuting case,
since all commutators of charges vanish. This sec-
ond term can deviate from 0 in the noncommuting
case, due to nonconserving trajectories, which we intro-
duge réowz.% Degne a trajectory (izl*,.i‘f, iﬁ, B5,...,05)

BLELELLELL . fiB) as conserving if the correspond-
ing charge eigenvalues satisfy
)‘a,ié + )ua’ig = )\.a’faA + )\.azfl'xB V. (11)
We call any trajectory that violates this condition non-
conserving. Loosely speaking, under Eq. (11), AB has the
same amount of «-type charge at the start and end of the
trajectory.

In the commuting case, pr = 0 when evaluated on non-
conserving trajectories. We call this vanishing detailed
charge conservation. Earlier work has relied on detailed
charge conservation [12,57]. In the noncommuting case,
pr need not vanish when evaluated on nonconserving
trajectories (Appendix C2). The mathematical reason is,
different charges’ eigenprojectors in pr [Eq. (4)] can fail
to commute. A physical interpretation is that measuring
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any Q2 disturbs any later measurements of noncommut-
ing O%,. Nonconserving trajectories resemble classically
forbidden trajectories in the path-integral formulation of
quantum mechanics.

We now show that nonconserving trajectories under-
lie the final term in Eq. (10). Every stochastic function
gy, iay .o sics fosfeo1s -+, /1) averages to (g) = (€)cons +
(@) noncons- Each term equals an average over just the con-
serving or nonconserving trajectories. For example, the
average in Eq. (8) decomposes as (0chrg) = (Ochrg)cons +
(Ochrg)noncons- The second term on the right-hand side of
Eq. (10) takes the form (g)noncons (Appendix C2c). In
the commuting case, all trajectories are conserving, so
the second term equals zero—as expected, since the term
depends on commutators [O7, Qﬁ/]. Therefore, the fluctua-
tion theorem’s final term (second correction) stems from
violations of detailed charge conservation. The average
in Eq. (8) contains contributions from conserving and
nonconserving trajectories.

We have identified two corrections to the fluctua-
tion theorem of Eq. (10). On the right-hand side of the
equation, the first term can deviate from 1 and the sec-
ond term can deviate from 0. The first deviation orig-
inates in the noncommutation of charges in p{ge. The
second deviation stems from nonconserving trajectories.
An example illustrates the distinction between the influ-
ences of noncommuting charges on the initial conditions
and dynamical trajectories. Let ¢ = 3, and let [Q}, O] #
0, while [Q1,03],[05,03] = 0. Let the noncommuting
charges correspond to uniform B: g = B} and 85 = f;.
Thus, there exists no temperature gradient that directly
drives noncommuting-charge currents. Accordingly, the
first term of the fluctuation theorem equals 1. Yet the sec-
ond term—an average over nonconserving trajectories—is
nonzero.

B. Surprisal stochastic entropy production

Ogurp Casts entropy as missing information (Sec. III B 1).
The average (o) can be expressed in terms of relative
entropies (Sec. I1I B 2), as one might expect from precedent
[52]. Yet initial coherences, relative to the product bases
of the charges, can render (o) negative. If p is a prod-
uct PG ® PGge—as across much of thermodynamics—p
has such coherences only if the O, fail to commute. Fur-
thermore, positive (og,p) values accompany the arrow of
time. Hence the noncommutation of charges enables a
resource, similar to work, for effecting a seeming rever-
sal of time’s arrow. The noncommutation of charges also
engenders a correction to the oy, fluctuation theorem
(Sec. III B 3).

1. Surprisal-SEP formula

Information theory motivates the surprisal-SEP
formula. Averaging the surprisal —log(pj) yields the

Shannon entropy (Sec. II C), so the surprisal is a stochastic
(associated-with-one-trial) entropic quantity. A difference
of two surprisals forms our o, formula. The probabili-
ties follow from preparing p and projectively measuring
the o™ product basis, for any «. Outcome i, := (2,2
obtains with a probability p, (i3, %) := Tr(I1,,, p); and
outcome f, := (,*,£,7), with a probability p, (£.2,£.F) :=
Tr([g, p). Appendix D1 shows how these probabilities
generalize those in the conventional surprisal-SEP formula
[52]. The surprisal SEP quantifies the information gained
if we expect to observe i, but we obtain f:

Do (i, i3 )
Osurp = log | —22— ). (12)
ook (pa )

All results below hold for arbitrary «. Nevertheless,
Appendix F introduces a variation on Eq. (12)—an alter-
native definition that contains an average over all «.
Appendix D 2 confirms that o, reduces to ocyyg if the O,
commute.

2. Average of surprisal SEP

(0surp) demonstrates that the noncommutation of charges
can enable a seeming reversal of time’s arrow. Time’s
arrow manifests in, e.g., spontaneous flows of heat from
hot to cold bodies. This arrow accompanies positive
average entropy production. Hence negative (o) simu-
late reversals of time’s arrow. These simulations cost
resources, such as the work traditionally used to pump heat
from colder to hotter bodies. Quantum phenomena, such
as entanglement, serve as such resources too [8,120]. We
identify another such resource: initial coherences relative
to the product bases of the charges, present in the common
initial state [Eq. (1)] only if charges fail to commute.

To prove this result, we denote by ®, the channel that
dephases states w with respect to the ath product basis:
Oy (@) := ), My Mg k. ogurp averages to

(Osup) = D(pr [|Pa (0)) — D(p||Pa(p))  (13)

(Appendix D3). The relative entropy is non-negative
(Sec. 1IC). Therefore, initial coherences relative to
the product bases of the charges can reduce (ogup).
Such coherences can even render (og) negative. Since
(Ochrg) = 0 [Eq. (9)], owurp is sensitive to the resource of
coherence, while oy is nOt.

This result progresses beyond three existing results.
First, coherences engender a correction to a heat-exchange
fluctuation theorem [12]. Those coherences are relative
to an eigenbasis of the only charge in Ref. [12], energy.
If the dynamics conserve only one charge, or only com-
muting charges, then the thermal product pigr ® PiGE
[Eq. (1)] lacks the necessary coherences. piqp ® PG has
those coherences only if charges fail to commute. Across
thermodynamics, pige ® pigr i ubiquitous as an initial
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state. Hence noncommuting charges underlie a resource
for effectively reversing time’s arrow in a common ther-
modynamic setup.

Second, Ref. [28] shows that noncommuting charges
can reduce entropy production in the linear-response
regime. Our dynamics U can be arbitrarily far from equi-
librium. Third, just as we attribute (og.p) < 0 to initial
coherences, so do Refs. [8,110,120,121] attribute nega-
tive average entropy production to initial correlations. Our
framework recapitulates such a correlation result, inciden-
tally: if p encodes correlations but retains GGE marginals,
(0cheg) [Eq. (8)] shares the form of Eq. (13), to within
one alteration. The decorrelated state p® ® p® replaces
the dephased state @y (p): (Tchrg) = D(pr |l0* ® p°) —
D(p||p®* ® pB). Initial correlations can therefore render
(0chrg) negative. Just as initial correlations can render a (o)
negative, so can coherences attributable to noncommuting
charges, oy, reveals.

3. Fluctuation theorem for surprisal SEP

To formulate the fluctuation theorem, we define the
coherent difference Ap, 1= ®y(p)~! — p~!. It quantifies
the coherences of p with respect to the o™ product basis.
If and only if p is diagonal with respect to this basis,
Apy = 0. The surprisal SEP obeys the fluctuation theorem

(e7%m) = | + Tr(U'®y () U Apy p) (14)

(Appendix D 4). The second term—the correction—arises
from the coherences of p relative to the product eigenbases
of the charges. If p = pigr ® PG> as throughout much of
thermodynamics, then p can have such coherences only if
charges fail to commute. Our correction resembles that in
Ref. [12] but arises from distinct physics: noncommuting
charges, rather than initial correlations.

C. Trajectory stochastic entropy production

Oiaj €vokes how entropy accompanies irreversibility
(Sec. IIIC1). oy, can assume nonreal values, signal-
ing contextuality in a noncommuting-current experiment
(Sec. III C2). Despite the unusualness of nonreal entropy
production, oy, satisfies two sanity checks: (oij) has
a sensible physical interpretation (Sec. IIIC3) and oiy;
obeys a correction-free fluctuation theorem (Sec. III C4).
Complex-valued entropy production has appeared also in
Ref. [11].

1. Trajectory-SEP formula

Owaj generalizes the conventional trajectory-SEP for-
mula, which we now review. Recall the classical exper-
iment in Sec. I: classical systems A and B begin in
grand canonical ensembles, then exchange energy and
particles. In each trial, AB undergoes the trajectory
(EF,N}EE,N?) (E}*,N;*,Ef,]\’f) with some joint

probability. Let us add a subscript F to the notation for that
probability: pr(EF, N, EF,N7 s Ef, N, EZ,NP). Imagine
preparing the grand canonical ensembles, then imple-
menting the time-reversed dynamics. One observes the
reverse trajectory, (EA,]\@A,E}?,NE) — (EP,NMEP,NP),
with a probability 'pR(E;‘,]\?,'Ej}?,]\GB; E* NP, E?,NP).
The log-ratio of the probabilities forms the conven-
tional trajectory-SEP formula [1-3,6]: log(pr/pr). In
an illustrative forward trajectory, heat and particles
flow from a hotter higher-chemical-potential A to a
colder lower-chemical-potential B. This forward trajec-
tory is more likely than its reverse: pr > pr. Hence
log(pr/pr) > 0, as expected from the second law of
thermodynamics.

Let us extend this formula to quasiprobabilities.
Section IIB has established a forward protocol suit-
able for potentially noncommuting Q,. That section has
attributed to the forward trajectory (iy,i,...,i) >
(fCafC—la s afl) the KDQ ﬁF(ilai29 s ,ic ;fC’fC—la s :fl)
[Eq. (4)]. The reverse protocol features UT, rather than U,
in step 3, with a reversed list of measurement outcomes.
The reverse trajectory (f1,/2,...,/c) > (csie—1,...,101)
corresponds to the quasiprobability pr(fi,f3,...,fc; ic,
ie—ty.ooyit) = Tr([Tlyy ... Hep ] UMy, .. T, 1UTp).
This definition captures the notion of time reversal, we
argue in Appendix E 1, while enabling o, to agree with
Ochrg and Ogrp in the commuting case (Appendix E 2). Both
quasiprobabilities feature in the trajectory SEP:

_ Pr(isi, e fesfemts -5 f1)
Otraj = 10g = A . (15)
pR(fl:fia' .. 5ﬁ5 lesle—1s - - "ll)

| Tr (UM [Ty ... Mo ] U[Mey, ... T, | p)
= Og
Tr([Miy, ... Hep ) U[Mey, ... Ty, | Utp)

:10g<<i1|plﬁm>)
WU )

The final equality follows from the nondegeneracy of
the local charges QX: the projectors I, = |ax)akl, so
factors cancel between the numerator and denomina-
tor. The (i;| and |f;) distinguish Q; from the other
charges. However, Eq. (16) holds for every possible
labeling of the O, (holds under the labeling of any
charge as 1) and for every ordering of the projectors in
Eq. (4). Moreover, Appendix F introduces a variation on
Eq. (15)—a definition that contains an average over all
measurement orderings, removing the dependence on the
ordering.

(16)

2. Nonreal trajectory SEP witnesses nonclassicality

Nonreal oy, values signal nonclassicality in a
noncommuting-current experiment. To prove this result,
we review weak values (conditioned expectation val-
ues) and contextuality (provable nonclassicality). We then
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FIG. 2. Weak value: the weak value serves as a “conditioned
expectation value” in the protocol depicted. Time runs from right
to left, as reading a weak value from right to left translates into
the procedure depicted: prepare w, evolve the state under V,
measure )/, and postselect on outcome y. Which value is retrod-
ictively most reasonably attributable to X immediately after the

preparation procedure? Arguably, this value is the weak value
[122—-125].

EXPIess Oy, in terms of weak values. Finally, we prove that
nonreal oy, values herald contextuality in an instance of
the forward or reverse protocol.

Figure 2 motivates the form of the weak value [59,126].
Consider preparing a quantum system in a state w at a
time ¢ = 0. The system evolves under a unitary V. An
observable ) is then measured, yielding an outcome y.
Denote by /X' an observable that neither commutes with
o nor shares the ) eigenstate [y). Which value is retro-
dictively most reasonably attributable to X immediately
after the state preparation? Arguably, that value is the weak
value [122-125] Tr(IT, Xw)/Tr(IT w), wherein IT} :=
Viy) (y|V. Weak values can be anomalous, lying outside
the spectrum of X'. Anomalous weak values actuate metro-
logical advantages [79,127—131] and signal contextuality
[82,90,132].

Contextuality is a strong form of nonclassicality
[98,133]. One can model quantum systems as being
in unknown microstates akin to classical statistical-
mechanical microstates. One might expect to model opera-
tionally indistinguishable procedures identically. However,
no such model reproduces all quantum-theory predic-
tions. This impossibility is quantum theory’s contextuality,
which underlies quantum-computational speedups [134].
Anomalous weak values signal contextuality in the process
prepare o, measure X weakly, evolve with V, measure )
strongly, and postselect on y [82,90,132].

Having introduced the relevant background, we prove
that o,; depends on weak values and signals contextual-
ity. Define the evolved projectors I1}, := UIl;; U' and
Mf . = UM, ; U. Define also the weak values

(7
(18)

Ay = Tr(ITy Ty p)/Tr(IT ; p)  and
i <H1:f1>p = Tr(n/l,ilHl:fl’o)/Tr(H/lsilp).
Each is a complex number with a phase ¢: 1 (I1y;), =

i (T o le®, and s, (Mg ) = Ly (T ) le ™%, We sup-
press the indices of the phases for conciseness.

Equation (16) becomes

s = log (|, (M| / 11 (Tif)o]) + iCr — d2)

+ log (Tr(IT{ ;, p)/Tr(IT} ;). (19)

The final log is of mere probabilities. The phase difference
is defined modulo 2. For convenience, we assume that the
branch cut of the complex logarithm lies along the negative
real axis [135]. Appendix E 3 explains how to choose the
value of the complex logarithm if p is pure and describes
subtleties concerning mixed states p.

If Im(0y,j) # 0, we call oy, anomalous and at least
one weak value is anomalous. Hence at least one of two
protocols is contextual:

(1) Forward compressed protocol. Prepare p. Measure
IT;;, weakly [136]. Evolve under U. Measure the O,
product basis strongly. Postselect on f.

(2) Reverse compressed protocol. Prepare p. Measure
IT,5, weakly. Evolve under U'. Measure the O,
product basis strongly. Postselect on .

The forward compressed protocol is a simplification of
the forward protocol in Sec. II B: only measurements per-
taining to charge Q) are performed. Analogous statements
concern the reverse compressed protocol. Hence oy, joins
a sparse set of thermodynamic quantities known to signal
contextuality [12,66].

The signaling of contextuality by oy, exhibits irre-
versibility—fittingly for an entropic phenomenon—
algebraically and geometrically. First, for oy, to signal
contextuality—to become nonreal—nonreality of a weak
value does not suffice. Rather, the phases of the weak
values must fail to cancel: ¢p # ¢r [137]. This failure mir-
rors how, conventionally, entropy is produced only when
DF 7# Dk

Second, suppose that p is pure. ¢r — ¢r equals the geo-
metric phase imprinted on a state manipulated as follows:
p 1is prepared, the forward compressed protocol is per-
formed, the state is reset to p, the reverse compressed
protocol is performed, and the state is reset to p [138,139].
All measurements here are performed in the strong limit.
The state acquires the phase ¢F during the forward step
and acquires e R during the reverse. Only if the forward
and reverse steps fail to cancel does the geometric phase #
1—does o1y, signal contextuality. Hence oy, heralds con-
textuality in the presence of irreversibility, appropriately
for a thermodynamic quantity.

3. Average of trajectory SEP

Formally, averaging o, [Eq. (15)] with respect to pr
yields a quasiprobabilistic relative entropy of Sec. IIC
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[140]:

(Gtraj) =D(ﬁF(ilﬂi29"'7iC;ﬁaﬁ—ls' . sﬁ)
I|ﬁR(flaf2:-">fc;icaicfla"-ail)) (20)

The average can be negative and even nonreal. Yet (o)
has a particularly crisp physical interpretation when p is a
pure state that retains GGE marginals, as in Eq. (1) [141].

A pure p is not as restricted as it may seem: thermody-
namics often features pure global states, the reduced states
of which are thermal [8,101,120,142,143]. The average
becomes

1 .
(Ow) = 3 [D(pl|®1(U'p 1)) + D(p||U'®1(p)V)

—D(p||®1(p)) — D(ps |11 (pr)]
+ i{¢F — ¢r) (21)

(Appendix E 3). Each ¢ implicitly depends on indices i;
and f. The real and imaginary components of {(oi,;j) have
physical significances that we now elucidate.

In Appendix E 3, we prove that (¢r — ¢r) is real [144].
Hence, if Im({(0y,j)) # 0, at least one ¢ [associated with
one tuple (i1, f1)] or one ¢r is nonzero. Therefore, at least
one weak value—at least one 4 (ITy;,), or ; (IT;z),—is
anomalous. At least one instance of the forward or reverse
compressed protocol is therefore contextual. In conclusion,
(Otaj), beyond oy, Witnesses contextuality.

Re({o1)) has two familiar properties. First, Re({oi))
> 0, suggestively of the second law of thermodynam-
ics. Second, Re({o,j)) depends on relative-entropy differ-
ences, similarly to Eq. (9).

Pairs of relative entropies have recognizable physical
significances. Each negated D is a relative entropy of
coherence, comparing a state (o or ps) to its dephased
counterpart [145]. Hence the coherences of states relative
to {ITy 4} reduce (oy,;). This reduction resembles the reduc-
tion of (ogup) by initial coherence (Sec. 111 B 2). Not only
initial coherences, though, but also final coherences reduce
(Utraj>-

The first two relative entropies in Eq. (21) imprint non-
commutation on {0y,j). In each such D, the compared-to
state (the final argument) results from a dephasing and a
time-reversed evolution. The ordering of the operations
differs between the relative entropies. The 1/2 in Eq. (21)
averages over the orderings. Hence (oy,j) translates into
sensible physics.

4. Fluctuation theorem for trajectory SEP

Passing another sanity check, oy, satisfies the

correction-free fluctuation theorem
(e7mai) = 1, (22)

The proof follows from the normalization of the KDQ.

1.5

1.0 T

0.5

00Fs===—"r"" T

-0.5 ~
(Uchrgr'\‘\ -

-1.0{ —— Re(e™
-==Im (e7*)
—1.5{ —— Re (e7%m —e ™ ) oncons

—==Im (7% — e ) noncons

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
6

FIG. 3. The components of the oy, fluctuation theorem, and
(0chrg), versus 6. The generalized inverse temperatures are S =
0.7, 82 =0.1, ﬁf} =1, ,Bf = 0.2, B2 = 0.5, and B = 0.6.

IV. TWO-QUBIT EXAMPLE

This section numerically illustrates the key properties
of the SEP definitions. First, we introduce the simulated
system. Afterward, we analyze the calculated SEPs using
generic parameter choices.

In our example system, A and B are qubits. The charges
are the Pauli operators Q) = 0., 0> = 0,, and O3 = 0.
By the Schur-Weyl duality, the most general charge-
conserving unitary is a linear combination of the permuta-
tions of two objects—a linear combination of the identity
and SWAP operators [47,117]. The SWAP operator acts on

states [Y), and [¢)g as SWAP V), @ [@)p = [¢)a @ [¥)5.
We parametrize the unitary with an angle 6:

Uy = cos(0) 1 + isin(f) SWAP. (23)

A. Charge SEP

Section III A3 has introduced nonconserving trajecto-
ries and the following results. On the right-hand side of
the fluctuation theorem Eq. (10) are two terms. The first,
notated as (e7*) (Appendix C1), encodes the noncom-
mutation of charges in the initial state [Eqs. (1) and (2)].
The final term of the fluctuation theorem, notated as
(e7%¢hre — 7Y ineons (Appendix C 1), is an average over
nonconserving trajectories.

We support these claims by showing how the two terms
change as 6 varies from 0 to /2 in Eq. (23). In Fig. 3, we
show the real and imaginary parts of the terms, as well as
the average entropy production (ocp). The values of the
generalized inverse temperatures (listed in the caption of
Fig. 3) ensure that a strong thermodynamic force pushes
the o, and o, charges from B to A, whereas a weak force
pushes o, oppositely.

The unitary parameter 6 increases along the x axis. As
per a sanity check in Sec. III, when 6§ = 0, the terms in
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the fluctuation theorem sum to one. The first term, (e™*),
equals one; and the second term, (e~ %<hig — ™) conss
vanishes. As 6 increases, charges flow more, as evi-
denced by the increasing (ocny). (™) changes little.
This near-constancy reflects the origination of (e7™) in
the noncommutation of charges in the initial state, which
remains constant as 6 changes. In contrast, as 8 grows,
(e %hre — 7 ) sncons INCreases in magnitude—due to both
its real and imaginary parts. This growth reflects the grow-
ing contribution of the nonconserving trajectories to the
right-hand side of the fluctuation theorem.

B. Surprisal SEP

The initial state p can have coherences relative to the
product basis of each charge. As discussed in Sec. [1I B 2,
these coherences can reduce {(oq), even rendering it neg-
ative. ogyyp 1s defined in terms of an arbitrary charge index
o, which we choose to be 1: Q) = o..

In Fig. 4, we show (o) as a function of B and 2. If
B2 > BE, p* is nearly diagonal relative to the o eigen-
basis. Hence (o) is positive, as evidenced in the top
left-hand corner of the plot. In the opposite regime (8. >>
B2), p* has large coherences relative to the o, eigenbasis.
These coherences drive (o) below zero, as evidenced in
the bottom right-hand corner.

C. Trajectory SEP

As shown in Sec. III C2, a nonreal oy, implies contex-
tuality in a noncommuting-charge experiment. oy, carries
indices #; and fi, by the definition Eq. (15). We numeri-
cally calculate the oy, evaluated on the trajectory defined
by li1) = 10)* ® [1)" and |fi) = 10)* ® |0)".

In Fig. 5, we show the imaginary part of oy,j(i1,/1)
plotted against B¢ and B 0w, typically has a nonzero

1.00
0.50
0.00 3
s
-0.01
1
—-0.02
———
o0 1 2 3 4 5
B?
FIG. 4. (o) as a function of the generalized inverse temper-

atures B¢ and B2 The unswept parameters are f; = 0, B2 = 0,
B2 =1.6,82 =0.1,and 6 = 7/5.

0.2

©
=

o
o
IM Otraj(ia, f1)

-0.2

-0.4

FIG. 5. The imaginary part of oy, plotted against B2 and
B;. The unswept parameters are 7 = 0.01, 87 = 0.01, g7 = 1,
BE =0.01,and 6 = 0.5.

imaginary component (of a magnitude similar to that of
the real part), signaling contextuality. The magnitude of
the imaginary component grows particularly large when
,3;" ~ 0. Furthermore, the imaginary component exhibits
stability, changing smoothly with the swept parameters.

V. EXPERIMENTAL SKETCH

Our results can be tested experimentally. Several pieces
of evidence indicate the feasibility of such an experi-
ment. First, a trapped-ion experiment has recently ini-
tiated the experimental testing of noncommuting-charge
thermodynamics [48]. Second, other platforms have
been argued to support such tests [27,47]. Examples
include superconducting qubits, neutral atoms, and pos-
sibly nuclear-magnetic-resonance systems. Third, sequen-
tial weak measurements have been realized with trapped
ions [146], superconducting qubits [147], and photonics
[148—152]. Fourth, we now sketch a trapped-ion experi-
ment inspired by Sec. [V. We outline the setup, preparation
procedure, evolution, measurement, and data processing.
For concreteness, we tailor the proposal to the platform
reported on in Ref. [153].

The platform consists of '"'Yb* ions in a linear Paul
trap. Each ion encodes a qubit in two hyperfine ground
states (two energy levels that result from splitting a ground
space with a hyperfine interaction). Our proposal calls for
ten qubits: two form the system of interest, two ancil-
las enable state preparation, and six ancillas enable weak
measurements. The system of interest consists of a qubit
A and a qubit B. These qubits will exchange charges oy,
oy, and o.. However, tracking just two noncommuting
charges suffices for an initial experiment. We choose o,
and o.
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A and B must be prepared in a tensor product of GGEs
[Eg. (2)]. One procedure involves two ancilla qubits, as
follows. Prepare A and an ancilla in a thermofield-double
state (a purification of a GGE), using the trapped-ion pro-
tocol in Ref. [153]. Discard the ancilla qubit. Repeat these
two steps with qubit B and another ancilla. The generalized
inverse temperatures B2 parametrize the initial state. One
chooses the parameter values as in Sec. IV, to observe the
three results listed two paragraphs below.

After the state preparation, one weakly measures o> and
o7, then ¢ and ¢°. One can implement a weak mea-
surement using a qubit ancilla, using the circuit shown in
Ref. [154, Fig. 1(a)]. Hence the initial weak measurements
require four ancillas total.

After these weak measurements, A and B evolve under
a charge-preserving unitary Uy [Eq. (23)]. The trapped-ion
platform under consideration offers a gate set formed from
arbitrary single-qubit rotations and XX gates [153,155].
The universality of the gate set implies that U can be
implemented, if the ions retain coherence for long enough.
The two-qubit gate requires the most time—between one
and hundreds of microseconds [155]. However, coherence
times range from hundreds of milliseconds to hundred
of seconds. The time scales are significantly separated,
although gate errors will further restrict circuit depth [156].

After the evolution, one weakly measures o and o?.
Our abstract protocol (Sec. 11 B) ends with weak measure-
ments of o and 6. An experimentalist can replace these
weak measurements with strong measurements, without
hindering the reconstruction of pr from the experimental
data [64]. Furthermore, the replacement spares us the need
for two extra ancillas.

One repeats the foregoing protocol many times. From
the measurement outcomes, we infer the probability dis-
tribution over the possible measurement outcomes. One
reconstructs the KDQ pr via the procedure in Ref.
[Appendix A][64]. Analogously, one infers pgr from
another batch of trials, guided by the reverse protocol of
Sec. IIIC 1. Since our theoretical results are deductive,
the proposed experiment essentially checks the accuracy
of quantum theory. However, observing three phenomena
would highlight quantum features exhibited by the SEPs
when charges fail to commute: (i) Observe a violation
of detailed charge conservation. (ii) Observe a negative
(Osurp)- (iil) Observe an imaginary component of oyy;.

VI. OUTLOOK

Noncommuting charges challenge common expecta-
tions about entropy production. Three common SEP for-
mulas, though equal when charges commute, separate
when charges do not. The formulas also offer differ-
ent physical insights into how noncommuting charges
impact entropy production. First, the noncommutation

enables stochastic trajectories to violate charge conser-
vation individually. We introduce these nonconserving
trajectories, which are possible only if charges fail to
commute, as quantum phenomena in stochastic thermo-
dynamics. The violations of detailed charge conserva-
tion underlie commutator-dependent corrections to a fluc-
tuation theorem. Second, initial coherences relative to
the eigenbases of the charges can render (og.,) nega-
tive. A common (two-thermal-reservoir) setup can entail
such coherences only if the charges fail to commute.
Hence, the noncommutation of charges sources a resource
that can, in a sense, effectively reverse time’s arrow.
Third, nonreality of oy, signals contextuality—provable
nonclassicality—in a noncommuting-current experiment.
Such thermodynamic signatures of contextuality—a
stringent criterion for nonclassicality—are rare. These
results hold arbitrarily far from equilibrium. In addi-
tion to proving these results deductively, we have illus-
trated them numerically and sketched a trapped-ion
test.

Our work introduces noncommuting charges into
stochastic thermodynamics [99]. All results in the field
now merit reevaluation, in case the noncommutation of
charges alters them. For example, thermodynamic uncer-
tainty relations bound the relative variance of a current
with entropy production [157—160]. Lowering entropy pro-
duction, noncommuting charges may increase the relative
variance, increasing the unpredictability of the currents.
Our work therefore motivates the derivation of thermo-
dynamic uncertainty relations that highlight exchanges of
noncommuting charges, using KDQs. Such relations may
follow as extensions of Ref. [159].

As another avenue opened up by our work within
stochastic thermodynamics, nonconserving trajectories
provide a new tool for unearthing genuinely quantum
effects. Consider any charge exchange modeled with a
KDQ. The KDQ decomposes into a conserving and non-
conserving part. The former is the only piece that survives
when the process has a classical (probabilistic) description.
The average of every stochastic physical variable (anal-
ogous to entropy production), with respect to the KDQ,
decomposes likewise. Hence the contribution of charge
noncommutation to the average can be delineated clearly.
For example, this technique could be applied to decompose
the averaged stochastic work performed by a monitored
quantum engine operating between noncommuting-charge
reservoirs.

Quantum engines offer another possible application
[38]: The more entropy an engine produces, the lesser the
engine’s efficiency. We have shown that noncommutation
of charges can lower entropy production even on aver-
age: coherences relative to the eigenbases of the charges
serve as a resource for reducing average entropy pro-
duction (Sec. III B). Hence engines might leverage such
coherences. Such an engine could exchange not only heat
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but also noncommuting charges with reservoirs. One could
extend the engine, proposed in Ref. [161], that leverages a
spin reservoir in place of a heat reservoir.

To put the charges on an even more equal footing, one
could average over them in the definitions of the KDQ and
the SEPs (Appendix F). Finally, calculating a closed form
for the average trajectory SEP, for mixed global states,
remains an open problem.

Experimental opportunities complement the theoretical
ones. In Sec. V, we have sketched a trapped-ion experi-
ment for testing our results. Such a test would highlight the
quantum features manifested by SEPs when charges fail to
commute.
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APPENDIX A: MEASURING THE
KIRKWOOD-DIRAC QUASIPROBABILITY VIA
THE FORWARD PROTOCOL

Here, we show how the forward protocol (Sec. 11 A)
leads to the KDQ pr [Eq. (4)]. One can infer pp from
experiments by performing the forward protocol and sim-
pler protocols [162]. The proof hinges on weak measure-
ments.

We briefly review a model for weak measurements
[64,68,125,126,163]. During any measurement, one pre-
pares a detector, couples the detector to the system S of
interest, and projects the detector (measures it strongly).
The outcome implies information about S. How much
information depends on the strength and duration of the
coupling. The entire measurement process evolves the state
of § under Kraus operators.

Kraus operators K; model general quantum oper-
ations [117]. They satisfy the normalization condi-
tion Zj KJTKJ = 1. Modeling a measurement that yields
outcome j , the operators evolve a measured state w as w +—>
K; a)KjT /Tr(K; a)KjT). For example, the first weak measure-
ment of the forward protocol effects a Kraus operator

Kl,i] ~ (const.) 1 + g1 Hl,il- (Al)

The dimensionless coupling strength g;; € C has a mag-
nitude much smaller than 1 [164]. Hence the forward
protocol evolves p to the (unnormalized) conditional state

[Kl,f'lKZ,fz . .Kc,ﬂ] U[Kc,ic e Kz,izKl,il] P

x [Keso - KoKy ] U [KijiKags - Kepr]™ . (A2)
The trace of this expression equals the probability that
upon projecting all the detectors, one obtains the outcomes
associated with iy, ip, etc. We can substitute in for each
K from equations of the form given in Eq. (Al). Then,
we multiply out the factors. In the resulting sum, one term
contains 2c¢ projectors I1 leftward of p and 2¢ identity oper-
ators 1 rightward of p. That term is the real or imaginary
part of pr [Eq. (4)], depending on whether the coupling
strengths are real or imaginary. pg is an extended KDQ,
containing > 2 projectors [68]. However, we call pr a
KDAQ for conciseness.

One can replace the final weak measurement with a
strong measurement, for experimental convenience. The
outermost Kraus operators in Eq. (A2)—the K5 and

Kif] —will become projectors Iy ;. The trace will con-
tain a term Tr([lefl H2Jz . Hc,fc]U[Hc,ic . Hz,izl'llﬂ,-l]
pU'T; 7). The rightmost projector can cycle around to
become the leftmost. Since Iy 5 Iy 5, = Iy 5, pr [Eq. (4)]
again results.

APPENDIX B: DEGENERATE CHARGES

This appendix concerns generalizations of our results to
degenerate charges Q,. Charge degeneracies would affect
the definitions of the KDQ in Eq. (4), pr, and the surprisal
SEP in Eq. (12), osup. Each quantity is defined in terms
of projectors—the product basis of at least one charge,
{Iyx}. If a O, is degenerate, at least one of its eigen-
projectors I, ; will have rank > 1. We have two choices
of projectors to use in defining pr and ogp: We can use
degenerate projectors or pick one-dimensional projectors.
Each strategy has a drawback, although apparently not due
to noncommutation of charges: the drawbacks arise even
in the commuting and classical cases. Future work can elu-
cidate degeneracies in greater detail and identify whether
degeneracies can play a special role in the noncommuting
case.

According to the first strategy, we continue to use the
eigenprojectors of the charges, regardless of ranks. pg
and oy, would retain their definitions, given in Egs. (4)
and (12). Awkwardly, the SEP formulas would no longer
equal each other in the commuting case, even if p were
diagonal with respect to the shared eigenbasis of the
charges.

To illustrate, we suppose that the dynamics conserve
only one charge. We drop its index 1 from eigenvalues
A1, and from eigenprojectors. According to Eq. (7), the
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charge SEP is Ochrg = B* ()\,fA — )\.iA) + B® ()\,fB — )\,iB). In
contrast, the surprisal SEP is

([ & 12 ])
Tr ([, © M2.1p)
= log (exp (B* [rank(ITy2)Ar2 — rank(IT;2) A ])
exp (B® [rank(ITy2)Are — rank(I1z)A2])) (B2)
= p* [rank(TT;2)Ar2 — rank(IT;2) Az |
+ B® [rank(IT;=)Ass — rank(IT)Az ] .

Osurp = log (B1)

(B3)

Due to the rank factors, ogurp 7 Ochrg-

Second, we can define pr and oy, in terms of rank-1
projectors only. If a O, has a degenerate eigenspace, we
must choose an eigenbasis for the space. The SEP formu-
las will remain equal in the commuting case. However,
different choices of projectors engender different correc-
tion terms in the oy fluctuation theorem given in Eq. (10)
and in the oy, fluctuation theorem given in Eq. (14). The
varying of the corrections with the choice of basis suggests
unphysicality.

For example, let each of A and B be a qubit. We

express operators relative to an arbitrary basis: 0y = (|} 9)

c

Ochrg = — Z [/35()"01,1'@ + )‘a,i[]f - )"a:fQA - )"a,f(XB) + AIBO‘ ()‘a,ié - )\'szfaA)] .

a=1

and 0, = (9). Choosing Iy} = (§§) and 1, = (§9)
11
11

engenders different correction terms than IT;; = \/LE (
_ 1 (1 -1
and H]jz = 75 (_1 1 )

APPENDIX C: CHARGE STOCHASTIC ENTROPY
PRODUCTION

This appendix concerns ochrg (Sec. IILA 1). We prove the
fluctuation theorem [Eq. (10)] in Appendix C 1 and explain
detailed charge conservation in Appendix C 2.

1. Proof of the charge fluctuation theorem

Here, we prove the ocpy, fluctuation theorem [Eq. (10)]
in Sec. IIT A 3:

(e %re) = Tr(UTe A10T || g MBeQe [phhel | APIOT

0)

+ (¢ — 1 terms dependent on commutators) .
(ChH)

Let us add and subtract ) o, B2 (A, 2
from the right-hand side of Eq. (7):

— Aqzp) to and

(€2)

We first calculate the right-hand side of the fluctuation theorem in the commuting case. The first parenthesized term in
Eq. (C2) vanishes when evaluated on conserving trajectories (Appendix C 2). If the charges commute, therefore,

(e Oehre) = (ga=1 Aﬂ“("a,@”aﬁ))

- ¥

A B A B
ol seenslenles

f‘lA’le,m?chch

X [Hl,i? X Hl’i]lg] p) eza=1 Aba (AO‘J%_)LO‘:/&A)

Tr (U% [leflA ® Hl,le] .. [HCJCA ® HCJCB] U[l_[c’l-? ® Hc,iCB] ..

= Y T Mpe1®]. [N P U[Ne @17 [0 @ 17] pee! CACF S

RS
AL, .
..[e A1 UZ?HI,;‘? Q HB] ,O)

(©3)
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= Tr(Ut {[e—AﬁlQ? . ..e—AﬁcQ?] ® ]13} U

([ oo

This expression is the right-hand side of the fluctuation
theorem in the commuting case (and equals 1 when p is
the usual tensor product of thermal states).

_ ¢ A By p—pEA —BEx
(e™ere) = Y " Tr(U'M ... Moy UMl Ty, p)eemt Ptudy P hata g ~Patap ~Patagp

We now compute (e °chiz) in the noncommuting case.
To identify a correction, we separate out a term of the form
given in Eq. (C4). All other terms will be commutator-
dependent corrections. First, we insert the definitions of
ochrg [Eq. (7)] and pr [Eq. (4)] into the left-hand side of
the fluctuation theorem. For conciseness, we suppress the
indices (i}, 17, ..., 5,0 5 %45, - L5 LP) in the sum:

(C5)

_pA _ BB A B A B
= Z Tr (UT |:e Prtigp Pt Hm] e [eiﬁ" PefprPeres l_Ic,fc] U [eﬂ" Fep Pk Hc,ic]

BEA, a+BEL B
. |:e 1 1,1] 1 1,11 Hl,il 0

= Tr(UTe PTOT-PIOT | o PEOE-PEQCpbiQethEQC  oPTOTHATOY ),

(Co)

We now massage this expression to bring out the commutator-dependent corrections. As always, 1 operators are implicitly
tensored on wherever necessary. We replace the expressions —B20% — BE0P with —AB2 Q0% — BEOY! in Eq. (C6):

(e Tchre) — Tr(UT [e—AﬂlQ‘?—ﬁ?Qﬁm o e—AﬂcQﬁ—ﬂﬁQi‘“] U[eAﬂcQ?-%ﬂPQZOt o eAﬁlef‘-i-ﬂ?Qt]m] 0).

(C7)

Now, we commute each e %22 from the left of U to the right, until the exponential cancels with its counterpart, Pl

Here are the first few manipulations, starting with the e P 1201 in the leftmost half of the argument of the trace:
p g g

(e_achrg> =Tr (UJV'e—A/SIQZI-\_ﬂ}BQtlm . efAﬁcle?_lfﬁf_|tho_tl e
= Tr(Ute BP0 —ATOT ||| o Dot Qi) g=BBeQ2 [Jphhe02 pAPe-1 Oy oABIOTHATOT!

T (U OMOIION 3000y [ 208 =800 g2 ] MmO 2,02

To arrive at the second line, we have canceled the expo-
nentials that contained 0. In the third line, canceling
the exponentials involving Q' ., we have had to swap

c—1
e P10t and e~ 2BeQ2 UpAFeOF | This swap has induced the
commutator-containing summand. Continuing in this fash-
ion—bringing all the O''-dependent exponentials together
and inducing a commutator each time—we arrive at the
desired form:

C A B A B
(eamt Pty Pata g —Pay pp—Pake

¢ MBDE [phBe0E | APIOT )
(€9)

(C10)

= Tr(UTe 2191 | .

+ (¢ — 1 commutator-dependent terms).

_AﬂL‘Q? UeAﬂcQ?eAﬁc—l Qf_l ‘Hgf_] th(il X

.. eAﬂle?+5? tlmlo)

P)
: eAﬂlQ?Jrﬁ?Qthtp) :
(C8)

(

We now expand on how the right-hand side simplifies to
1 in the commuting case. First, the ¢ — 1 commutator-
dependent terms vanish. For example, consider the com-

mutator [e_’s E—lgtco—tl, e~ AP0r UeAﬂCQ?]. The first argument

commutes with e=2#<%¢ because the charges commute.
Also, the first argument commutes with U because of
charge conservation. Hence the commutator vanishes.

Second, the first term in Eq. (C9) equals 1. The thermal
state [Eq. (1)] expands as a product, so the term simplifies
as

Tr(Ute 20T || o D00 phheli | AP0

p)
= (U [[e 9 UT] eA,saQ?% [ *eoi-#ioty
14 $ o

(C11)
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1 o
=Tr(U [[e 2 U [Te %" (C12)
1% o

=1. (C13)
The third equality follows from charge conservation.

2. Detailed charge conservation

The KDQ obeys detailed charge conservation if pg is
nonzero only when evaluated on indices that satisfy
)\’Dl,ié + )\'Ol,ig = )\'Ul,ﬂyA + )\'a;faB’ Va{ (C14)

If the dynamics conserve just one charge, the KDQ
obeys detailed charge conservation, as we show in

Appendix C2a. Appendix C2b generalizes the argument
to multiple commuting charges.

a. Detailed charge conservation in the presence of only
one charge

Here, we prove that the KDQ obeys detailed charge con-
servation in the presence of only one charge. We omit the
index of the charge to simplify notation. The total charge
eigendecomposes as O* + O° = ) ", A;I1;. The eigenpro-
jectors decompose as Iy = ) a =, hathp =i IMa ® ;5.
Since U commutes with O, U has the same block-diagonal
structure: U = ), By, wherein By, has support only on the
subspace projected onto by IT;.

The relevant KDQ is pr(i®,i%f2,f ) = Tr(U'Tl,
UIl;p). By the orthogonality of the projectors, Il U =
Iy By, wherein k satisfies Ay = Asa + Ays. By the same
logic, BxIT; = 0, unless Ay = A + A;=. Hence Iya,2 UTI,
and so p(*,i®; f 2,/ ) is nonzero only if A;» 4+ Ase =
Ar = A + A3, satisfying detailed charge conservation.

b. Detailed charge conservation in the presence of
commuting charges

Suppose that the dynamics conserve multiple charges
that commute with each other. We show that the KDQ sat-
isfies detailed charge conservation. Recall the form of pg
in Eq. (4). Since the charges commute, every eigenprojec-
tor in pr commutes with every other. Thus, rearranging the
projectors does not alter the quasiprobability. We bring the
initial and final charge-« eigenprojectors beside U:

ﬁF(i?s l?n ] lLAs ZLB ’ f;-Aaf;-Bs e 7f1A’f‘1B)
=Tr(U' [Ty, ... Moy ] UMy, ... iy ] o) (C15)
=Tr(U" ... Ty Ullyy, .. p). (C16)
By the reasoning for one charge, unless A, 2 + 4,z =
Ao sp + Ao sp, the projected unitary I, g, Ully;, = 0 and

hence pr = 0. This conclusion governs an arbitrary «, so
pr satisfies detailed charge conservation.

c. Connection of Fluctuation theorem to
nonconserving trajectories

We now show how the two terms in the oy fluctuation
theorem [Eq. (C1)] are related to (non)conserving trajec-
tories. According to Appendix C 1, the first term on the
right-hand side of the fluctuation theorem is (¢~*), wherein
K= 0 1 ABa(hgzp — Ay 2) [Eq. (C3)]. Since the aver-
age decomposes as () = ()cons + {*)noncons,> the first term
of the fluctuation theorem can contain contributions from
conserving and nonconserving trajectories.

To identify the relation of the second term to noncon-
serving trajectories, we rewrite the fluctuation theorem:

(e7%¢he) = (e7F) + (e” bz — ") (C17)
= (") + {e7 %z — ™) s

+ (77 — ™) noncons (C18)

= (e7) + (e77M — ™) oncons- (C19)

The third line follows because o¢ng = k¥ On conserving tra-
jectories, by the oy, definition given in Eq. (7) and the
definition in Eq. (11) of conserving trajectories. There-
fore, the second term of the fluctuation theorem equals the
average, over nonconserving trajectories, of e~ 7chre — 7%,

APPENDIX D: SURPRISAL STOCHASTIC
ENTROPY PRODUCTION

This appendix supports claims made about oy, in
Sec. IIIB 1. First, we complete the motivation for the
definition of oy, (Appendix D 1). We show that the charge
and surprisal formulas equal each other in the commuting
case (Appendix D 2); we calculate {og,p), proving Eq. (13)
(Appendix D 3); and we prove the fluctuation theorem
given in Eq. (14) for o, (Appendix D 4).

1. Motivation for the suprisal SEP formula

Section IIIB1 has partially motivated the oy
definition given in Eq. (12). Information theory suggests
that the SEP depends on surprisals. The surprisals are
of particular probabilities. Why those probabilities? This
appendix motivates the choice.

We build on the first paragraph in Sec. IIIC 1. For
simplicity, we suppose that only energy is ever mea-
sured. A classical thermodynamic story has motivated the
conventional SEP formula,

log (pr (B, EF 5 EP ER) pr(E}, EF s EXED)) . (D1)

i

The pr denotes the probability of observing the forward
trajectory—the probability of observing £ and E?, times
the probability of observing £7 and E7, conditioned on the
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initial observations and on the forward dynamics:

x p(Ef, Ef | E}, E;, forward dynamics). (D2)
The reverse probability decomposes analogously:
pr(Ef,EF ; B} EY) = p(Ef, EF,)
x p(E}E?, |E;5,EfB,reverse dynamics). (D3)

The dynamics are reversible, so the conditional probabil-
ities cancel in Eq. (D1) [52]. The trajectory-SEP formula

reduces to log <p (E>, EP)/p (EA,E_}?)) . This SEP formula

is the difference of two surprisals. Each is evaluated on
the probability of observing some outcome, upon prepar-
ing each system and measuring its energy. The analogue,
in the noncommuting case, is Eq. (12).

2. Equivalence of oy, and oy in the commuting case

Throughout this appendix, we assume that the charges
commute with each other: [Q,, On] = 0 Va, a’. We estab-
lish that oy, and ocyrg agree: osup = Ochg When evaluated
on any trajectory for which pr # 0. The restriction on tra-
jectories is a technicality; on a trajectory that never occurs,
the values of the SEPs are irrelevant to any calculation.

For convenience, we assume that the eigenvalues of the
charges are ordered as follows. The eigenvalues of Q) are
ordered arbitrarily. The eigenvalues of each other Q, are
ordered so that the j ! eigenvalue, A, j» corresponds to the
same eigenvalue as Aj;. This ordering is possible due to
the nondegeneracy of the charges: they all have the same
number of eigenspaces.

pr # 0 only on trajectories in which all initial indices
equal each other, as do all final indices: i} =i, = ... =i,
and f; = f, = ... =f. This claim follows from the order-
ing stipulated in the last paragraph: up to a relabeling
of eigenspaces, I, e =0, unless i, = i;. The claim
now follows immediately from the definition of the KDQ
[Eq. (D]:

ﬁF(ilaiZ:-"aic;.fwfcfla"-’ﬁ)

= Tr (U' [y Moy, ... ey UMy, .. o, T ] 0).
(D4)

On the trajectories on which pr # 0, we can simplify the
Ochrg formula [Eq. (7)] by equating the /* indices of all the
charges, equating the /® indices of the charges, equating
the /' # indices of the charges, and equating the f/ ® indices

of the charges:

c

Ochrg = Z [B7 (egp = 2en) + B7 (hege — 2ei2) ]
=1

if o # 0.

Now consider the surprisal SEP, which is defined in terms
of measurement probabilities [Eq. (12)]. These probabil-
ities simplify in the commuting case. Consider strongly
measuring the shared eigenbasis of the charges of system
X. Outcome 7 obtains with a probability

(D5)

1 — c XX
Tr(l'[;(’iépx) = ﬁTr(Hz,ify{e Z(:l ,3; Q{)

_ ie_ T B x Tr(MI? ,) = Le_ P ﬂ?xg’%‘
ZX o, ZX
(D6)
The last equality follows from the nondegeneracy of the
charges: the eigenprojectors are rank-1. The choice of «

is arbitrary, because all the charges have the same product
bases. The surprisal SEP is therefore

_ A _ A
| o TPt X Bt
Osurp = 108 7y y
o e Prhegp o Yo Bk

= Z [B7 (egp = 2en) + B7 (eyp — 2ci2) ]
¢

D7)

(D)
in agreement with Eq. (D5).
3. Calculation of {ogyrp)
Here, we prove Eq. (13),
(Osurp) = D(py [|Pa (0)) — D(p|Pa(p)). (D9)

Osurp [Eq. (12)] depends implicitly on fewer indices than
pr depends on [Eq. (4)]. Therefore, some of the indices
disappear (yield factors of unity) when summed over in
(Osurp) - Let us substitute the definition of o, into the left-
hand side of Eq. (D9) and then substitute in the definition
of each probability. Finally, we rearrange terms:

pot (iia ls T
(Osup) = {log prB) = ZTT(U Mgz, Ul 0)
“Va »Ja o ofo

(Tr(na i ,0))

x log| ——————

Tr(Ma, 0)

=Y Tr(Myy,p) log (Tr(My i, p))

g

— Z Tr(Ia, pr) log (Tr(Tle , £))
Ja

(D10)
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=Tr ([Z log (Tr(na,iam)na,ia} p)

lo

—Tr | | Y May, log (Tr(May,0)) | or (D11)

S

To simplify the traces, we recall the channel that dephases
p with respect to the product basis of Q,: ®,(p) :=
> i Mg PTlaiy = D Tr(Mg, p) My g, - In terms of this
channel,

log (P4 (p)) = Y _ 1og (Tr(Ma.i, p)) Mas, -

iy

(D12)

Substituting  into  Eq.  (D11)  yields  (ogup)
= Tr(plog (o (p))) — Tr(py log (Pa(p))). This expres-
sion can be rewritten in terms of relative entropies. By

J

(emm)y =

A A A rA rA A
P50y el s [175 sl

A B
= Y m(Umaen|u[n, e (M>

A B A rB
igsics Joi o

=1l U Mnm* ., I . pa(fA,fB) U m, I . pa(iA,iB)_l P
oo ofo a Ja o,y a,ig a’ o

J

The summands simplify to dephased states and inverses
thereof: ZfaAfaB(Hz’faA ® HSJQB) Pa(f21.B) = ®,(p) and
Z@J‘g(ni’@ ® Hi,ig) Pa(l'i: IE = qDot(p)il = :071
+ Ap,. We substitute into Eq. (D16), multiply out, and
simplify:

(e™wm) = Tr(U' ®q (0)U[p~" + Apu] p)

= Tr(U' @, (p)Up ™" p) + Tr(U' @, (0) UApy p)
(D17)

=1+ Tr(U' ®u(0) UApup) - (D18)
The second term is the correction sourced by coherences.
It vanishes if Ap, = 0.

APPENDIX E: TRAJECTORY STOCHASTIC
ENTROPY PRODUCTION

This appendix concerns the trajectory-SEP formula
(Sec. IIIC1). We further motivate our choice of reverse
quasiprobability, pr, in Appendix E1. We prove that

TI‘(UTHM'] e Hc,ﬂﬂ UHC,,‘C e Hl,,‘l,O) (

the unitary invariance of the von Neumann entropy, 0 =
Sw(p) — Sw(pr) = Tr(ps log(pr)) — Tr(p log(p)).
Adding this 0 onto our (ogmp) expression yields
Eq. (D9).

4. Proof of fluctuation theorem for ogyrp

Here, we prove the fluctuation theorem given in
Eq. (14),

(e m®) = 1+ Tr(U @y (p) UApup). (D13)
Also, we present the form of the correction.

Recall the definition of the coherent difference Ap, =
®,(p)~' — p~!. We substitute into (e~?ur) the definitions
of osup [Eq. (12)] and pr [Eq. (4)]. As with the deriva-
tion of (ogurp), some of the indices are marginalized over.
Rearranging factors,

P (L)
Pa 2) ) 14)
PN (D15)
(D16)

A B
lasly

Otraj = Ochrg N the commuting case (Sec. IIIC1) in
Appendix C2. In Appendix E 3, we calculate (oyj) [prove

Eq. (21)].

1. Choice of reverse quasiprobability

Section II B has introduced the forward quasiprobability
[Eq. (D],

ﬁF(il’léa'--’ic;f;"f;‘fla-' 5ﬁ)

i=Tr (U 114 oy, ... ey | UMy, - . Moy, Ty ] ),
(E1)

and Sec. [II C 1 has introduced the reverse quasiprobabil-
ity,

ﬁR(fiaﬁn A 5ﬂ5 ic; iC—la cc 7il)

=Tr ([nlfl HZ,/'; e Hc’fé] U[HC,,‘C e Hz,,‘znl,,‘l] UJT,O).
(E2)
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We have motivated the definition of pr operationally in
Sec. [II C 1. However, other possible definitions could sat-
isfy the constraint that, in the commuting case, oi,j must
reduce to Ochrg and ogyp. The prior literature features
nonunique reverse distributions (of probabilities, rather
than quasiprobabilities) [52,165]. The authors there have
distinguished one reverse distribution by specifying one of
multiple possible reverse protocols. Similarly, we specify
a reverse protocol from which pr can be inferred experi-
mentally. We therefore regard pr as capturing the notion
of time reversal.

We can associate each KDQ with a protocol—the key
stage of an experiment used to infer the quasiprobability
(see Appendix A and Ref. [68]). One begins at one end of
the argument of the trace and proceeds toward the opposite
end. If a projector appears on just one side of p, that pro-
jector corresponds to a weak measurement. We show that
the pr protocol is a time reverse of the pr protocol.

We associate pr with a protocol by reading the indices in
Eq. (E1) from right to left: one measures charges 1 through
¢ weakly, evolves the state forward in time, and then mea-
sures charges ¢ through 1 weakly. Before interpreting pg,
we cycle p to the left-hand side of the trace:

ﬁR(fl)ﬁa"')f(:’; icaic—la- . '7il)

=Tr (o [y ... Mey] UMy, ... T, ] U . (E3)
Then, we read from left to right. In the associated protocol,
one measures charges 1 through ¢ weakly, evolves the state
backward in time (under U'), and then measures charges
¢ through 1 weakly. Relative to the forward protocol, the
time evolution is reversed, as is the list of measurement

outcomes.

2. Equivalence of oy,j and ogyp in the commuting case

In this appendix, we show that oy,j = ogurp in the com-
muting case. Equation (16) defines the trajectory SEP:
(E4)

0w = log ((i1] pU A1) / (i1l UTp I11)) -

Since the initial state is diagonal with respect to the
1® product basis, (ij| p = Tr(I1;,p) (i1], and p|fi) =
Tr(I1s, p) |f1) . Therefore,

o — 1o g(Tr(l’[,l,o) (L U A) ) log (Tr(nill)))
T S\ T 0) (] UT 1) Tr(Mly,p) ) |
(ES)

The final expression is oy [Eq. (12)] with a = 1. (The
choice of « is irrelevant in the commuting case, since all
the product bases coincide.) We have already established
the equivalence of oy, and ocyry in the commuting case
(Appendix D 2). Therefore, we have shown that all three
SEP formulas agree when charges commute.

3. Calculation of (0i.,j) when the initial state p is pure

Let the initial state in Sec. Il A be pure: p = |[{)(V¥].
Under this assumption, we derive Eq. (21):

1 .
=5 [D(pl12' (U pU)) + D(pIIU' @' (p)U)

—D(pl|®"(0)) — Dlps 119" (o )] + i(dr — ¢r)-
(E6)

(Gtraj )

Our proof consists of three steps.
Owj in terms of weak values,
Eq. (19):

First, we express
slightly rewriting

+ i(¢r — Pr).
(E7)

Second, we prove that i(¢r — ¢r) is imaginary. Finally,
we prove that the average of the logarithm is real
and equals the relative-entropy sum in Eq. (E6). By
implication, i{(¢r — ¢r) = Im((0r;)). This result supports
the claim in the main text that Im({oy,j)) # 0 signals
contextuality.

Let us show that i{(¢r — ¢r) is imaginary. Let z denote
any complex number. We denote the principal value of its
argument (of its complex phase) by Arg(z) and the mul-
tivalued argument function by arg(z). ¢r — ¢r equals an
argument by Eq. (16) and the polar forms in Sec. IIIC 1:
For each index pair (i1, f1), there is a branch of arg such
that

¢F_¢R=arg(<n|w><w|zﬁm>>

@IUT (P Ifi)
= Arg ((i|¥)) + Arg (W |U"]11))
— Arg ({0 |U'y)) — Arg (W 1/1)
Each summand in the right-hand side of Eq. (E8) depends
on one index, 7; or fi. (If p is mixed, oy, does not decom-
pose in this manner. Hence new techniques are required
to compute the average.) Therefore, averaging ¢r — ¢r

with respect to pr yields separate averages with respect
to probability distributions. Hence (¢r — ¢r) is real and

i{¢r — ¢r) is imaginary.
Our task reduces to showing that

o ()
|11 Hlfl |Tr( 111,0)
! Legt T
=5 [DOII®'WU'pU) + D(IIU® () V)

— D(pl|®'(p)) — D(ps 119" (p/))] .

(E8)

(E9)
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The weak values have magnitudes of

[Tr(l'l/f,fl M, 0) Te(pIy; I 4 )]

D=

i (M), | =

Tr(

hﬂmhmﬁm“@“mHMﬂ

- and
Hlflp)
(E10)

Bf—

| (T )| =

Tr(IT} ;, )

Lip

When we insert these expressions into Eq. (E9), the denominators in Eq. (E10) cancel. To simplify the left-hand side
of Eq. (E9) further, we express p and the rank-1 projectors as outer products: p = [y) (|, Iy, = [i1){i1], etc. Factors
(fi|Uli1) and (i;|U'|f;) appear in the numerator and denominator. Canceling the factors, we compute the left-hand side of

Eq. (E9):

<10g
[ Tr(T1}, T ) Tro M, T )

>

2
[Tr(T1Y T o) Te(o T, )| >_ <1

D=

S fcs f15mec

1 ;
zTr(UVHLfl lechHC,it- . Hl,il,o)log(

1
=3 | 22 Tr@iyi o) log (Tr(May; o)) + Y Tr(Ma 5 p) log (Tr(My ;)

N i

— > Tr(Myg, pr) log (Tr(TTy 4, 0)) — > Tr(Iy, p) log (Tr (M ;, U pU))

N i

N —

The final equality follows from Eq. (D12).

By the unitary invariance of the von Neumann entropy,
IS (p) — Sin(p) + S (p) — Sin(pr)] = 0. We  add
this zero to Eq. (E13). By the cyclicality of the
trace, Tr (p log (UT @ (p)U)) = Tr (UpU' log (®1(p))) in
Eq. (E13). Rearranging terms yields the right-hand side of
Eq. (E9). Re({0j)) is non-negative because it can be writ-
ten as 1 [D(®!(p)[|@' (U'pU)) + D(®' (o) @' (0))].

When p is pure, Eq. (E6) points, for each index pair
(i1,/1), to a choice of branch of the complex logarithm
in the definition of oyyj. This choice enables (o) to sig-
nal contextuality. If p is mixed, in the absence of a more
explicit expression for (0igj), it is not clear what choice
enables (o) to signal contextuality.

APPENDIX F: SYMMETRIZED DEFINITIONS

In defining the KDQ and some SEPs, we choose pro-
jectors and the order in which to arrange them. Here, we
discuss alternative KDQ and SEP definitions based on

<Tr(l'[1’f1 U,olﬂ)Tr(Hl,il 0) )>
- (E11)
2\ eIy ) Tr(M, U pU)
Tr(M UpUbTr(nl,ilp)) E12)
Tr(Iy 5, p)Tr(T1y;, Ut pU)
(E13)
[Tr (pr log (®1(pr)) + Tr (plog (@1(p))) — Tr (pr log (®1(p))) — Tr (plog (®1(U'pU)].  (El4)

(

symmetrizing over these choices. We present the corre-
sponding averages (o). Via arguments similar to the ones
for unsymmetrized SEPs o, one can derive fluctuation
theorems.

1. Symmetrized Kirkwood-Dirac quasiprobability

A primary motivation for using the KDQ is a desire to
describe charges flowing in the absence of measurement
disturbance. Though based on weak measurements, the
KDQ depends on the ordering of the measurements, i.e.,
how the charges are labeled. But if the systems interact uni-
tarily without being measured, relabeling the charges does
not change any physical observables. Also the stochastic
description of this process should respect this symmetry.
We take this for granted in the commuting case, in which
the ordering of the measurements does not change the joint
probability distribution. We can enforce this symmetry in
the noncommuting case by averaging over all possible
orderings of the initial projectors. (Once the initial pro-
jectors are ordered, the ordering of the final projectors is
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fixed by the fourth sanity check in Sec. I11.) We define the
symmetrized KDQ (SKDQ) as

i 1
Pr = S TeU Moy - - Meosi |

" reS,

U[HT(C),iI(C) A HT(I),Q(])] p) (Fl)

S. is the symmetric group of degree c, i.e., the set of
all permutations of Z.. py " is invariant under every
possible relabeling of the charges, respecting a fundamen-
tal symmetry of the undisturbed-charge-flow process. The
single-index marginals of the SKDQ are those of pg. In the

. ~Symm ~
commuting case, pg = pr.

2. Charge stochastic entropy production

The charge SEP is already symmetric under every pos-
sible relabeling of the charges. Since the SKDQ has the
same marginals as the KDQ, oy has the same average:

(Gchrg)symm = (Gchrg> = Z A,Ba A(Qa) (F2)
¢ |

3. Surprisal stochastic entropy production
To obtain the symmetrized surprisal SEP, we average
over the different bases:

c .

mm ., 1 pa(la7i2)
o = 2 los (pa AL2)

a=I

(F3)
The average now involves dephasing in all bases:

1 c
(o symm = = > [Dor [1@a (0)) = D(pl| Pa(p))]
a=1

(F4)

4. Trajectory stochastic entropy production

A natural definition for the symmetrized trajectory SEP
is

(i Up Ifer)

1S | pU
O;zjmm _ - <Z log M) . (F5)
a=1
This symmetrized SEP is closely related to the SKDQ. As
in the unsymmetrized case, we define the trajectory SEP
as the ratio of the forward and reverse quasiprobabilities.

However, we perform the averaging after taking the ratio:

traj -
C:
T€eSe

I <ia|plﬂva>)
= - 1 — .
c 2 Og(<ia|wpm>

Pr(T)

The cancellation of the factors simplifies the sum to be
only over ¢ charges, rather than ¢! permutations. If p is
pure, the average is

c

1 1
(o) = = ) {5 [D(ol|®4 (U p1)) + DU @1 (0)U)

a=1
—D(p|®1(p)) — D(ps [|P1(pr))]

+ i(d’? - d’%)symm} . (F8)

The weak-value phases for general o are defined analo-
gously to the weak-value phases in Sec. I11 C 2.
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