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The eigenstate thermalization hypothesis (ETH) explains why chaotic quantum many-body sys-
tems thermalize internally if the Hamiltonian lacks symmetries. If the Hamiltonian conserves one
quantity (“charge”), the ETH implies thermalization within a charge sector—in a microcanonical
subspace. But quantum systems can have charges that fail to commute with each other and so share
no eigenbasis; microcanonical subspaces may not exist. Furthermore, the Hamiltonian will have de-
generacies, so the ETH need not imply thermalization. We adapt the ETH to noncommuting charges
by positing a non-Abelian ETH and invoking the approximate microcanonical subspace introduced
in quantum thermodynamics. Illustrating with SU(2) symmetry, we apply the non-Abelian ETH
in calculating local observables’ time-averaged and thermal expectation values. In many cases, we
prove, the time average thermalizes. However, we also find cases in which, under a physically reason-
able assumption, the time average converges to the thermal average unusually slowly as a function
of the global-system size. This work extends the ETH, a cornerstone of many-body physics, to
noncommuting charges, recently a subject of intense activity in quantum thermodynamics.

“Chaotic” closed quantum many-body systems ther-
malize internally, in the absence of conserved charges:
Typical observables O equilibrate to the expectation val-
ues they would have in the canonical state ρcan ∝ e−βH .
H denotes the Hamiltonian, whose expectation value de-
termines the inverse temperature β [1]. The eigenstate
thermalization hypothesis (ETH) explains this thermal-
ization [2–4]: Let |α〉 denote the energy eigenstates; Eα,
the eigenenergies; and Oαα′ := 〈α|O|α′〉, matrix elements
representing the observable. O and H satisfy the ETH if

Oαα′ = O(E) δα,α′ + e−Sth(E)/2 f(E , ω)Rαα′ . (1)

The two energies’ average is E := (Eα+Eα′)/2; their dif-
ference is ω := Eα − Eα′ ; O(E) and f(E , ω) are smooth,
real functions; Sth(E) denotes the thermodynamic en-
tropy (the logarithm of the density of states) at the en-
ergy E ; δα,α′ denotes the Kronecker delta; and R is a
Hermitian matrix of erratically varying elements, which
have zero means and unit variances across small Eα and
Eα′ windows [5, 6]. The first, “diagonal” (α=α′) term
in Eq. (1) contains the microcanonical expectation value
O(E). The thermodynamic entropy Sth(E) exponentially
suppresses the second, “off-diagonal” term. The ETH
explains behaviors observed numerically and experimen-
tally in condensed matter; atomic, molecular, and optical
physics; and high-energy physics (e.g., [1, 7–16]).
If O and a nondegenerate H satisfy the ETH, O ther-

malizes [1, 17], in the following sense. Let N denote
the size of the global system, which begins in a nor-
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malized state |ψ(0)〉 =
∑

α Cα|α〉 with an extensive en-
ergy E := 〈H〉 = O(N).1 Let the energy variance,
var(H) := 〈H2〉 − E2, be ≤ O(N). At a time t, the
observable has an expectation value

〈
O
〉

t
=
∑

α

|Cα|2Oαα +
∑

α6=α′

C∗
αCα′ ei(Eα−Eα′)t/~

Oαα′ .

(2)

Consider averaging this value over an infinite time:

〈O〉t := limt→∞
1
t

∫ t

0
dt′ 〈O〉t′ . As H lacks degeneracies,

phase cancellations ensure that the second term averages
to zero: 〈O〉t =

∑

α |Cα|2Oαα. By the energy-variance
bound, |Cα| is significant only for α values in a narrow
window. By the ETH (1), Oαα ≈ O(E) can approxi-
mately be factored out of the sum, which then equals
one by the state’s normalization. Therefore, the time-
averaged expectation value 〈O〉t approximately equals
the microcanonical averageO(E) [18]. The latter approx-
imates the canonical average, Tr(Oρcan), by the thermo-
dynamic ensembles’ equivalence at large N .
At all times, the difference 〈O〉t−〈O〉t depends on the

second term in (2). This term is typically exponentially
small inN , by the off-diagonal term in the ETH (1). This
exponential smallness can be overcome at an instant (e.g.,
t = 0), if exponentially many Cα’s have relative phases
such that the C∗

αCα′Rαα′ ’s add coherently, overpowering
the e−Sth(E)/2. But time evolution destroys this coher-
ence, and 〈O〉t relaxes to 〈O〉t ≈ Tr(Oρcan).

1 We use big-O notation as in many-body physics, meaning “scales
as,” rather than to encode an upper bound, as in information
theory.
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This argument for thermalization relies on the Hamil-
tonian’s nondegeneracy and the matrix-element struc-
ture (1). Both postulates are questionable if H conserves
charges.2 IfH has an Abelian symmetry, the energy spec-
trum can lack degeneracies. Since the charges commute,
they share eigenspaces—charge sectors. In each shared
charge sector, the ETH applies. For example, many spin-
system dynamics conserve the total spin’s z-component,
Sz. Similarly, many particle dynamics conserve total par-
ticle number. The ETH is often applied in an Sz sector
or a particle-number sector, wherein Eq. (1) and the ar-
guments above hold.
A non-Abelian symmetry can eliminate our recourse

to a charge sector: Such a symmetry is generated by
charges Qa that fail to commute with each other and
so cannot necessarily be assigned definite values simul-
taneously. Furthermore, non-Abelian symmetries have
irreducible representations of dimension > 1, generically
forcing degeneracies on H . Finally, in opposition to (1),
the matrix elements Oαα′ are constrained by the observ-
able’s transformations under the symmetry operations.
For example, consider N qubits (quantum two-level

systems). H can conserve the global spin components
Sa=x,y,z, inducing an SU(2) symmetry. The energy spec-
trum splits into degenerate multiplets labeled by total
spin quantum numbers sα. Only the singlets, whose
sα = 0, are simultaneous eigenspaces of all the Sa. The
matrix elements Oαα′ obey the Wigner-Eckart theorem
[Eq. (13)], conflicting with the näıve ETH (1).
We bridge the ETH to the thermodynamics of non-

commuting charges, a subfield emerging at the intersec-
tion of quantum information and quantum thermody-
namics [19–49]. We propose a non-Abelian ETH and
apply it to SU(2) symmetry [Eq. (14)], expecting the re-
sults to generalize. Using the non-Abelian ETH, we com-
pute two averages of K-local observables: time-averaged
and thermal expectation values. For many observables
and initial states, we find, the time average agrees with
the thermal average: Deviations are O(N−1), as with-
out noncommuting charges [50]. For certain observ-
ables and |ψ(0)〉’s, however, the time average deviates
from the thermal prediction by anomalously large cor-
rections ∼ N−1/2. This result holds under a physi-
cally reasonable assumption about the non-Abelian ana-
log of Oαα′ . Our argument employs the Wigner–Eckart
theorem; properties of Clebsch–Gordan coefficients; and
approximate microcanonical subspaces, which generalize
microcanonical subspaces to accommodate noncommut-
ing charges [22, 35, 48]. This work extends the ETH,
a mainstay of many-body physics, to the more fully
quantum domain of noncommuting charges and so to
quantum-information thermodynamics. Below, we intro-

2 We focus on continuous symmetries to bridge ETH studies with
the emerging subfield of the quantum thermodynamics of non-
commuting charges (Hermitian operators that generate continu-
ous symmetries).

duce our setup, present the non-Abelian ETH, apply it
to calculate observables’ thermal and time-averaged ex-
pectation values, compare the averages, and outline the
opportunities established by this work.

Setup.—Consider a quantum system formed fromN ≫
1 degrees of freedom. The Hamiltonian, H , is chaotic. It
conserves a number ≪ N of charges Qa that do not all
commute: [H,Qa] = 0, but [Qa, Qa′ ] 6= 0 for some a′ 6= a.
H lacks other symmetries.
We illustrate with N qubits whose global spin compo-

nents Sa=x,y,z are conserved. We omit ~/2 factors. H ,
~S2, and Sz share an eigenbasis {|α,m〉}:

H |α,m〉 = Eα|α,m〉, (3)

~S2|α,m〉 = sα(sα + 1)|α,m〉, and (4)

Sz|α,m〉 = m|α,m〉, wherein (5)

m = −sα,−sα + 1, . . . , sα . (6)

Ladder operators S± = Sx±iSy raise and lower Sz . Since
H is chaotic and lacks other symmetries, Eα = Eα′ ⇔
α = α′.
Our results govern the thermodynamic limit (N → ∞)

and the physically realizable mesoscale (large but fi-
nite N). The correspondence principle (as systems grow
large, they grow classical) suggests that effects of non-
commutation (a nonclassical phenomenon) vanish in the
thermodynamic limit. Therefore, the mesoscale is par-
ticularly interesting here.
The normalized initial state decomposes as

|ψ(0)〉 =
∑

α,m

Cα,m|α,m〉 , wherein Cα,m ∈ C . (7)

Operators O have time-t expectation values 〈O〉t :=
〈ψ(t)|O|ψ(t)〉. We drop the subscript from time con-
stants:

〈H〉 =: E , and (8)

〈Sz〉 =:M . (9)

Aligning the z-axis with 〈~S〉, we set 〈Sx〉, 〈Sy〉 = 0. The
state has an extensive energy, E = O(N), and is far from
maximally spin-polarized: N −M = O(N).3

The system begins in an approximate microcanoni-
cal subspace, which generalizes a microcanonical sub-
space for noncommuting charges [22, 35, 48]. Measuring
any charge Qa likely yields an outcome near 〈Qa〉; the
charges’ variances are bounded as

var(H) ≤ O(N), (10)

var(Sz) ≤ O(N), and (11)

var(Sx,y) ≤ O(N) . (12)

3 ETH-type statements tend to hold when the thermodynamic en-
tropy is extensive. Sth is generally nonextensive when additive
conserved quantities (e.g., E or the Sa’s) lie near their extremes,
which we exclude.



3

Conditions (10)–(12) govern typical many-body states
prepared today, including all short-range-correlated
states [35, 48].4

Having introduced the initial state, we profile observ-
ables expected to obey the non-Abelian ETH. Blessed
with a symmetry, we focus on symmetry-adapted op-
erators, without sacrificing generality: Spherical tensor

operators consist of components T
(k)
q that can linearly

combine to form any observable O [51]. For example,
consider an atom absorbing a photon (of spin k = 1),
which imparts q=1 quantum of z-type angular momen-

tum. T
(k=1)
q=1 represents the photon’s effect. Gener-

ally, the index q = −k,−k + 1, . . . , k; and the opera-

tor obeys the commutation relations [Sz, T
(k)
q ] = q T

(k)
q

and [S±, T
(k)
q ] =

√

(k ∓ q)(k ± q + 1)T
(k)
q±1. Examples in-

clude spin operators that act nontrivially on a site j and
as the identity elsewhere: The spin component sj,z is a

T
(1)
0 , and the ladder operators sj,± are T

(1)
±1 .

We focus on K-local observables O, formed from ten-
soring together ≤ K single-qubit factors Oj , potentially
summing such products, and normalizing such that O’s
operator norm is ≤ O(K).5 Every K-local observable
equals a linear combination of spherical-tensor compo-

nents T
(≤K)
q . We focus on K = O(1), so k = O(1), so

q = O(1). Such observables are expected to satisfy an
ETH-type postulate [1, 52].

Non-Abelian ETH.— Consider representing an observ-

able T
(k)
q as a matrix relative to the energy eigenba-

sis. The matrix elements obey the Wigner–Eckart theo-
rem [51],

〈α,m|T (k)
q |α′,m′〉 = 〈sα,m|s′α,m′; k, q〉〈α||T (k)||α′〉.

(13)

The Clebsch–Gordan coefficient 〈sα,m|s′α,m′; k, q〉 is
nonzero only if m′ + q = m and sα = |s′α − k|, |s′α − k|+
1, . . . , s′α + k; in the photon-and-atom example, the par-
ticles’ initial and final quantum numbers obey the rules
of angular-momentum addition. The reduced matrix el-
ement 〈α||T (k)||α′〉 can obey the non-Abelian ETH, we
posit now.
Define the average energy E := 1

2 (Eα + Eα′), energy
difference ω := Eα − Eα′ , and matrix R as in the intro-
duction. Analogously, define the average spin quantum
number S := 1

2 (sα + s′α) and the difference ν := sα − s′α.
Denote by Sth(E ,S) the thermodynamic entropy at en-
ergy E and spin quantum number S. The observable

4 Let d denote the spatial dimensionality. Equations (11) and
(12) are satisfied if spin–spin correlations 〈sj,asj′,a〉−〈sj,a〉〈sj′,a〉

decay more quickly than |j − j′|−d as the spatial separation
|j − j′| → ∞. If this latter condition governs energy-density
correlations, Eq. (10) holds.

5 Example K-local observables include densities
1
N

∑N−1
j=1 OjOj+1 . . .Oj+K−1.

T
(k)
q and Hamiltonian H obey the non-Abelian ETH if,

for smooth, real functions T (k)(E ,S) and f (k)
ν (E ,S, ω),6

〈α||T (k)||α′〉 = T (k)(E ,S) δα,α′ (14)

+ e−Sth(E,S)/2 f (k)
ν (E ,S, ω)Rαα′ .

Unlike E , S is nonextensive, so the S dependencies may
be unexpected. Yet the Wigner–Eckart theorem (13) pre-

vents 〈α||T (k)
q ||α′〉 from depending onm orm′. Hence the

non-Abelian ETH can encode non-Abelian-charge con-
servation only through S.
Thermal prediction.—Chaotic systems thermalize to

the canonical state ρcan ∝ e−βH if just energy is con-
served; to the grand canonical state ρGC ∝ e−β(H−µN )

if the energy and particle number N are conserved; etc.
Which thermal state emerges depends on the charges. If
they fail to commute, derivations of the thermal state’s
form break down [20, 22]. Certain derivations were gen-
eralized in quantum-information thermodynamics to ac-
commodate noncommuting charges [21–23, 53, 54], lead-
ing to the non-Abelian thermal state (NATS),

ρNATS := e−β(H−
∑

a
µaQa)/Z . (15)

β and the effective chemical potentials µa are defined by
(i) Tr(HρNATS) = E and (ii) the fixing of the charge ex-
pectation values Tr(Qa ρNATS) = 〈Qa〉 [35].7 The parti-
tion function is Z := Tr(e−β(H−

∑
a
µaQa)). States of the

form (15) are often called generalized Gibbs ensembles,
especially if H is integrable and the Qa commute [55–
57]. Signatures of ρNATS emerged dynamically in numer-
ical simulations [35] and a trapped-ion experiment [48];
yet full thermalization to ρNATS has not been observed
in a closed quantum many-body system. Furthermore,
noncommuting charges were conjectured to alter ther-
malization [35]. Using the non-Abelian ETH, we identify
wide classes of local observables and initial states that
thermalize. However, we find opportunities for anoma-
lously large deviations from thermal predictions in the
mesoscale.
Our z-axis choice simplifies ρNATS to e−β(H−µSz)/Z.

Although ρNATS shares its mathematical form with ρGC,
the physics differs significantly. Here, energy and three
noncommuting charges are conserved globally and trans-
ported locally; during grand canonical thermalization,
only energy and particles (commuting charges) are. In
the grand canonical case, the global system begins in
a microcanonical subspace. Here, no nontrivial micro-
canonical subspace (associated with sα 6= 0) exists, and

6 Specifically, T (k) and f
(k)
ν are smooth functions of E/N and S/N

in the thermodynamic limit.
7 In a non-Abelian twist on chemical potential, the µa transform
as an adjoint representation of SU(2). If rotating bodies replace
the spins, the µa reduce to angular velocities normalized by β.
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the global system begins in an approximate microcanon-
ical subspace. These differences in setup permit differ-
ences in thermalization.
T

(k)
q has a thermal expectation value 〈T (k)

q 〉th :=

Tr(T
(k)
q ρNATS) whose trace we calculate using the |α,m〉

basis. We apply the Wigner–Eckart theorem (13), then
the non-Abelian ETH (14). The Clebsch–Gordan coeffi-
cient vanishes if q 6= 0, so8

〈
T (k)
q

〉

th
=
δq,0
Z

∑

α,m

e−β(Eα−µm) 〈sα,m|sα,m; k, 0〉

× T (k)(Eα, sα) . (16)

Note that ρNATS satisfies the variance conditions (10)–
(12) by Laplace’s method and, independently, by the
state’s being short-range-correlated [58].4

Time-averaged expectation value.—After |ψ(0)〉
[Eq. (7)] evolves for a time t, the observable T

(k)
q has an

expectation value

〈
T (k)
q

〉

t
=

∑

α,α′,m,m′

C∗
α,mCα′,m′ ei(Eα−Eα′)t (17)

× 〈α,m|T (k)
q |α′,m′〉.

We invoke the Wigner–Eckart theorem (13), invoke the

non-Abelian ETH (14), and average 〈T (k)
q 〉t over an infi-

nite time (limt→∞
1
t

∫ t

0
dt′). For all α′ 6= α, the exponen-

tial in (17) dephases, so the “off-diagonal” terms vanish:

〈T (k)
q 〉t =

∑

α,m

C∗
α,m+qCα,m〈sα,m+ q|sα,m; k, q〉

× T (k)(Eα, sα) . (18)

Comparison.—We prove two results: (i) IfM = O(N),
the time average (18) equals the thermal average (16),
plus O(N−1) corrections. Such corrections emerge also
in the absence of noncommuting charges [50]. (ii) If
M = 0, the time average may deviate from the ther-
mal average by anomalously large, O(N−1/2) corrections.
These corrections appear sourced by different physics:
quantum uncertainty in noncommuting charges, rather
than thermodynamic ensembles’ distinguishability at fi-
nite N [50].9

Consider an extensiveM = O(N) and sj,z-like observ-

ables T
(k)
q=0. The thermal average (16) and time aver-

8 We consistently drop corrections exponentially small in N .
9 Anomalous thermalization may occur also at intermediate scal-
ings M = O(Nγ), wherein 0 < γ < 1. (Indeed, our M = 0
constructions can be modified to show anomalous thermalization
∀ γ ≤ 1/2.) However, this range encompasses cases too numerous
for this paper. It suffices to show that (i) K-local observables
thermalize under most circumstances but (ii) anomalous ther-
malization is possible under a physically reasonable assumption.

age (18) both assume the form

∑

α,m

pα,m〈sα,m|sα,m; k, 0〉 T (k)(Eα, sα) =:
〈
T

(k)
0

〉

p
.

(19)

The probabilities pα,m are unit-normalized and have
bounded moments: For all nonvanishing nonnegative-
integer triples (A,B,C) ∈ (Z≥0)

3 \ (0, 0, 0),
〈
(Eα − E)A (m−M)B (sα −M)C

〉

p
≤ O

(
NA+B+C−1

)
.

(20)

For a variable X , we have defined 〈X〉p as the average

over {pα,m}. The distribution equals {e−β(Eα−µm)/Z} in
the thermal average and, in the time average, the diag-
onal ensemble {|Cα,m|2}. Both distributions satisfy the
moment condition (20) by the scalings E,M = O(N) and
the variance conditions (10)–(12) (App. A).
In Eq. (19), we can Taylor-approximate the averaged

quantity about (Eα = E, m = M, sα = M), thanks to
the moment condition (20) and to the Clebsch–Gordan
coefficient’s and T (k)’s smoothness (App. B). In the Tay-
lor expansion, a general term is an nth-order derivative
times an nth-order moment, for some n ≥ 0. The deriva-
tive is ≤ O(N−n), by the functions’ smooth dependence
on Eα/N , m/N , and sα/N . By the moment condi-
tion (20), the moment is ≤ O(Nn−1). Hence Eq. (19)
reduces to

〈T (k)
0 〉p = T (k)(E,M) +O(N−1) (21)

(App. B). Therefore, the thermal and time averages are
equal to within O(N−1) corrections.

Now, consider ladder-operator-like observables T
(k)
q 6=0.

The thermal average (16) vanishes, due to the Kronecker
delta. We upper-bound the time average (18) in App. C,
using the Cauchy-Schwarz inequality; a large-sα approxi-
mation of Clebsch–Gordan coefficients (App. D); and, for
q = ±1, the assumption 〈Sx,y〉0 = 0. The time average
is ≤ O(N−1), equaling the vanishing thermal average to
within O(N−1) corrections.
We now identify two cases where the corrections can

be anomalously large. In both, M = 0, so µ = 0.

First, consider any rotationally invariant observable T
(0)
0 .

The Clebsch–Gordan coefficient 〈sα,m|sα,m; 0, 0〉 = 1.
Hence the thermal average (16) and time average (18)
reduce to

〈
T

(0)
0

〉

th
=

1

Z

∑

α,m

e−βEα T (0)(Eα, sα) and (22)

〈
T

(0)
0

〉

t
=
∑

α,m

|Cα,m|2 T (0)(Eα, sα) . (23)

Appendix E details the argument sketched here: We
Taylor-expand the smooth function T (0)(Eα, sα) about
(Eα = E, sα = 0). In the expansion, a general term is a
moment 〈(Eα − E)A (sα)

C〉p times a derivative of T (0).
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The leading (A = C = 0) term averages to T (0)(E, 0).
Terms with A ≥ 1 or C ≥ 2 average to ≤ O(N−1),
as before. The remaining (A = 0, C = 1) term is
linear in sα/N . We crucially assume that this linear
term is present—that the derivative ∂T (0)(E ,S)/∂S|S=0

is nonzero. We argue, in App. F, that this is physically
reasonable for suitable Hamiltonians and observables. In
the thermal average (22), 〈sα〉th = O(N1/2), so the sα/N
term evaluates to O(N−1/2). In contrast, in the time av-
erage (23), we can engineer Cα,m to be large only when
sα = O(1). The sα/N term will time-average to O(N−1).
Hence the time average deviates from the thermal aver-
age by

〈
T

(0)
0

〉

th
− 〈T (0)

0 〉t = O(N−1/2) > O(N−1) . (24)

Appendix G details a second scenario for anomalous
thermalization. We construct a |ψ(0)〉 with four nonzero
coefficients Cα,m [Eq. (7)], which have relative phases

±1. The anomalously thermalizing observable is a T
(k)
q

whose k > 0 is even and whose q = 1. The argument re-
lies on (i) a symmetry of Clebsch–Gordan coefficients and
(ii) the smooth function T (k)(Eα, sα)’s having a term of

O(sα/N), as above. The time average 〈T (k)
1 〉t deviates

from the thermal average 〈T (k)
1 〉th by an O(N−1/2) cor-

rection, as in (24).
Anomalous O(N−1/2) scaling characterizes also a re-

sult in [22]. Reference [22] generalized a conventional
derivation of the thermal state’s form to accommodate
noncommuting charges. The global system was assumed
to be in an approximate microcanonical state (a nor-
malized projector onto an approximate microcanonical
subspace). The environment was traced out. The re-
duced state’s distance to ρNATS was upper-bounded with
(const.)N−1/2 + (const.), echoing Eq. (24). Hence our
results, based on the ETH and dynamics, may reflect the
kinematic results in [22].

Outlook.—We have extended the eigenstate thermal-
ization hypothesis, a cornerstone of many-body physics,
to the more fully quantum scenario in which conserved
charges fail to commute with each other. Noncommuta-
tion can prevent the charges from sharing an eigenspace
(a microcanonical subspace) and invalidates the usual as-
sumption that the Hamiltonian lacks degeneracies. We
overcame these challenges by proposing a non-Abelian
ETH and focusing on an approximate microcanonical
subspace. Applying these tools to SU(2), we compared
the long-time average of an observable’s expectation
value with the thermal expectation value. The averages
agree in many cases, e.g., whenever M = O(N). Yet the
averages can disagree by anomalously large O(N−1/2)
corrections otherwise, under a physically reasonable as-
sumption.
This work opens several avenues for future research.

First, our analytical results call for testing with numer-
ics and quantum simulators, e.g., trapped ions, ultracold
atoms, and superconducting qudits [47, 48]. One would

aim to verify the non-Abelian ETH (14); identify oper-
ators whose smooth functions T (k) satisfy our assump-
tions, enabling anomalous thermalization; and observe
deviations (24) from the thermal prediction. Second, we
expect our arguments to generalize from SU(2). Third,

the smooth function f
(k)
ν (E ,S, ω) [Eq. (14)] should re-

veal how non-Abelian symmetries influence thermaliza-
tion dynamics. Fourth, the thermodynamics of noncom-
muting charges [19–45, 47, 48] merits bridging to many-
body scars, which also have emergent non-Abelian sym-
metries and violate the ETH [59, 60]. This work extends
the ETH to the more fully quantum regime of noncom-
muting charges, linking many-body physics to quantum-
information thermodynamics.
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Appendix A THE INITIAL STATE SATISFIES THE MOMENT CONDITION.

The main text casts the diagonal ensemble {|Cα,m|2} as satisfying the moment condition (20),

〈
(Eα − E)A (m−M)B (sα −M)C

〉

p
≤ O

(
NA+B+C−1

)
∀(A,B,C) ∈ (Z≥0)

3 \ (0, 0, 0) . (A1)

We prove the claim here. The proof relies on (i) the finite dimensionality of the local subsystems’ Hilbert spaces; (ii)
the scalings

E = O(N) and M = O(N) ; (A2)

and (iii) the variance conditions (10)–(12), repeated here for convenience:

var(H) = 〈H2〉 − E2 ≤ O(N), (A3)

var(Sz) = 〈S2
z 〉 −M2 ≤ O(N), and (A4)

var(Sx,y) = 〈S2
x,y〉 ≤ O(N) . (A5)

The variance conditions are satisfied, for example, if |ψ(0)〉 is short-range-correlated.4
The proof proceeds in three steps. First, we derive analogs for ~S2 of the scaling and variance conditions (A2)

and (A3)–(A5). Second, we upper-bound fairly general correlators’ magnitudes. Third, we combine steps 1–2.

Step 1: Unlike Sz, ~S
2 is nonextensive. Therefore, ~S2’s expectation value and variance are not necessarily bounded

as Sz’s are. However, we can prove similar bounds. We define the diagonal average of any variable Xα,m as

〈Xα,m〉diag :=
∑

α,m

|Cα,m|2Xα,m. (A6)

We will prove the bounds

〈sα〉diag ≤M +O(1) and
〈
(sα −M)2

〉

diag
≤ O(N) . (A7)

First, we sum the variance conditions (A4) and (A5):

〈~S2〉 −M2 ≤ O(N). (A8)

We evaluate the left-hand side (LHS) on |ψ(0)〉 [Eq. (7)]:
∑

α,m

|Cα,m|2sα(sα + 1)−M2 ≤ O(N). (A9)

The inequality is equivalent, by algebra and the normalization of {|Cα,m|2}, to

M + (2M + 1)
∑

α,m

|Cα,m|2(sα −M) +
∑

α,m

|Cα,m|2(sα −M)2 ≤ O(N) . (A10)

Since M =
∑

α,m |Cα,m|2m, we can replace the second term’s (sα −M) with (sα −m). Recall that m ≤ sα. Every

factor on the inequality’s LHS is therefore nonnegative, so every term is, so every term must be ≤ O(N) . Since
2M +1 = O(N), the second term implies that

∑

α,m |Cα,m|2(sα −M) ≤ O(1) . By the definition of 〈.〉diag, we recover
the first inequality in (A7). The second inequality in (A7) follows similarly from Ineq. (A10)’s third term.

Step 2: We now upper-bound fairly general correlators’ magnitudes. Let x1, x2, . . . , xn denote real-valued functions
of α and m. (For notational brevity, we suppress the functions’ dependencies on α and m.) Let the functions’
magnitudes obey the upper bound |xj | ≤ X ∈ R ∀ j, α,m. We analyze correlator magnitudes of the form

∣
∣
∣
∣

〈

xA1

1 xA2

2 . . . xAn

n

〉

diag

∣
∣
∣
∣
. (A11)

Without loss of generality, the powers are ordered from greatest to least: A1 ≥ A2 ≥ . . . ≥ An ≥ 0. At-least-two-point
correlators interest us, so A :=

∑n
j=1 Aj ≥ 2. Therefore, either A1 ≥ 2 or A1 = A2 = 1. In the first case, we show,
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the correlator magnitude (A11) is upper-bounded by XA−2 times 〈x21〉; in the second case, the correlator magnitude
is upper-bounded by XA−2 times 1

2 〈x21 + x22〉. We parcel the factors so for reasons clarified in step 3.
First, suppose that A1 ≥ 2. To upper-bound (A11), we invoke the average’s definition, then the triangle inequality:

∣
∣
∣
∣

〈

xA1

1 xA2

2 . . . xAn

n

〉

diag

∣
∣
∣
∣
≤
∑

α,m

|Cα,m|2 |x1|A1 |x2|A2 · · · |xn|An . (A12)

We separate out a factor of |x1|2. Then, we bound the rest using the assumption |xj | ≤ X and the definition
A :=

∑n
j=1 Aj :

∣
∣
∣
∣

〈

xA1

1 xA2

2 . . . xAn

n

〉

diag

∣
∣
∣
∣
≤
∑

α,m

|Cα,m|2 |x1|2 · |x1|A1−2|x2|A2 · · · |xn|An

︸ ︷︷ ︸

≤XA−2

≤
〈
x21
〉

diag
XA−2 . (A13)

The final inequality follows from the reality of x1.
Now, suppose that A1 = A2 = 1. To bound the correlator magnitude (A11), we again invoke the average’s definition,

then the triangle inequality. This time, we separate xA1

1 xA2

2 = x1x2 from the other variables:
∣
∣
∣
∣

〈

xA1

1 xA2

2 . . . xAn

n

〉

diag

∣
∣
∣
∣
≤
∑

α,m

|Cα,m|2 |x1x2| · |x3|A3 |x4|A4 · · · |xn|An

︸ ︷︷ ︸

≤XA−2

. (A14)

Since x1 and x2 are real, x21 + x22 − 2|x1x2| = (|x1| − |x2|)2 ≥ 0. Rearranging yields |x1x2| ≤ 1
2 (x

2
1 + x22). Combining

this inequality with Ineq. (A14), we obtain
∣
∣
∣
∣

〈

xA1

1 xA2

2 . . . xAn

n

〉

diag

∣
∣
∣
∣
≤ 1

2

〈
x21 + x22

〉

diag
XA−2 . (A15)

Step 3: We now synthesize steps 1 and 2. Let (x1, x2, x3) equal (Eα − E, m −M, sα −M) or some permutation
thereof. Since local subsystems have finite-dimensional Hilbert spaces, each variable is upper-bounded by some O(N)
number X . By the variance conditions, the functions 〈x2j 〉diag and 1

2 〈x2j + x2k〉diag are O(N) for all j, k = 1, 2, 3 .
Therefore, substituting into Eq. (A13) yields the moment condition (A1), as does substituting into Eq. (A15).
We can now explain why, during step 2, we sought bounds that contained 〈x21〉diag or 〈x21 + x22〉diag. These averages

are only O(N). If we had treated x21 or x1x2 like the other variables, each would have contributed an O(N2) factor
to the corresponding bound. We would not have recovered the all-important −1 in the moment condition’s exponent
[Eq. (A1)].

Appendix B CALCULATION OF TIME AVERAGE AND THERMAL AVERAGE

WHEN M = O(N) AND q = 0

We aim to evaluate the LHS of Eq. (19),

∑

α,m

pα,m〈sα,m|sα,m; k, 0〉 T (k)(Eα, sα) =:
〈
T

(k)
0

〉

p
. (B1)

The moment condition (A1) implies that pα,m peaks near (Eα = E, m = M, sα = M) . Furthermore, the Clebsch–

Gordan coefficient and T (k) are smooth. Hence we can Taylor-approximate each function about (Eα = E, m =
M, sα =M) .

Taylor expansion of Clebsch–Gordan coefficient: In App. D, we approximate the Clebsch–Gordan coefficients at
sα ≫ 1 and sα −m ≪ sα . The latter condition does govern the dominant contributions to Eq. (B1): The moment
condition (A1), together with M = O(N) , implies that 〈(sα − m)n/snα〉p ≤ O(N−1) , for n ≥ 1 . To prove this
inequality, we Taylor-expand (sα − m)n/snα about m = M and sα = M . A general term in the expansion is of
O
(
[m−M ]B[sα −M ]C/MB+C

)
, wherein B,C ∈ Z≥0 and B + C ≥ n . Each such term averages to ≤ O(N−1) .

Hence
〈[

sα −m

sα

]n〉

p

≤ O
(
N−1

)
, for n ≥ 1. (B2)
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Having justified the use of the asymptotic expansion in App. D, we now use the expansion. Substituting q = 0 into
Eq. (D13) yields

〈sα,m|sα,m; k, 0〉 = 1 +O

(
sα −m

sα

)

+ . . . (B3)

The . . . consists of terms that contain additional powers of (sα − m)/sα . Taylor-expanding the Clebsch–Gordan
coefficient about m = sα =M , which is O(N) , yields

〈sα,m|sα,m; k, 0〉 = 1 +O

(
m−M

N

)

+O

(
sα −M

N

)

+ . . . (B4)

A general term in the expansion is of O
(
[m−M ]B[sα −M ]C/NB+C

)
, wherein B,C ∈ Z≥0.

Taylor expansion of T (k): By assumption, T (k)(E ,S) is a smooth function of E/N and S/N . Therefore,

∂A

∂EA

∂C

∂SC
T (k)(E ,S)

∣
∣
∣
∣
E=E,S=M

= O

(
1

NA+C

)

. (B5)

Hence the Taylor expansion of T (k)(Eα, sα) about (Eα = E, sα =M) has the form

T (k)(Eα, sα) = T (k)(E,M) + O

(
Eα − E

N

)

+O

(
sα −M

N

)

+ . . . (B6)

A general term in the expansion is of O
(
[Eα − E]A[sα −M ]C/NA+C

)
, wherein A,C ∈ Z≥0.

Combining the two Taylor expansions: We substitute the Taylor series (B4) and (B6) into the average (B1), then
multiply out. As discussed in the main text’s setup section, T (k)(E,M) = O(1) . Therefore,

〈

T
(k)
0

〉

p
=
∑

α,m

pα,m

[

T (k)(E,M) +O

(
Eα − E

N

)

+O

(
m−M

N

)

+O

(
sα −M

N

)

+ . . .

]

. (B7)

A general term has the form O
(
[Eα − E]A[m−M ]B[sα −M ]C/NA+B+C

)
. In the leading term, T (k)(E,M) can be

factored out of the sum, which then equals one, by the normalization of {pα,m} . The general remaining term averages,
by the moment condition (A1), to ≤ O(NA+B+C−1/NA+B+C) = O(N−1) . Hence

〈T (k)
0 〉p = T (k)(E,M) +O(N−1) , (B8)

as quoted in Eq. (21).

Appendix C CALCULATION OF TIME AVERAGE WHEN M = O(N) AND q 6= 0

Let us upper-bound the time-averaged expectation value (18), assuming that M = O(N) and q 6= 0:

〈

T
(k)
q 6=0

〉

t
=
∑

α,m

C∗
α,m+qCα,m〈sα,m+ q|sα,m; k, q〉 T (k)(Eα, sα) . (C1)

When q vanished (App. B), we simplified the average using properties of |Cα,m|2. We can achieve some of that
simplification here, using the Cauchy-Schwarz inequality: Define the vectors ~u and ~v in terms of the components

u∗α,m = C∗
α,m+q

√

〈sα,m+ q|sα,m; k, q〉T (k)(Eα, sα) and vα,m = Cα,m

√

〈sα,m+ q|sα,m; k, q〉T (k)(Eα, sα) . Any
branch-cut convention can be applied to the square root. Define the inner product ~u · ~v :=

∑

α,m u∗α,mvα,m . The

Cauchy-Schwarz inequality states that |~u · ~v| ≤
√
~u · ~u

√
~v · ~v ≤ max{~u · ~u, ~v · ~v} , so

∣
∣
∣
∣

〈

T
(k)
q 6=0

〉

t

∣
∣
∣
∣
≤ max

{
∑

α,m

|Cα,m|2
∣
∣〈sα,m|sα,m− q; k, q〉T (k)(Eα, sα)

∣
∣ ,

∑

α,m

|Cα,m|2
∣
∣〈sα,m+ q|sα,m; k, q〉T (k)(Eα, sα)

∣
∣

}

. (C2)
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We have redefined m+ q 7→ m in the first sum.
The sums are dominated by terms in which

(Eα ∼ E, m ∼M, sα ∼M) and so, by the moment condition (A1), sα −m≪ sα , (C3)

as when q = 0 (App. B). We approximate the Clebsch–Gordan coefficients under these conditions in App. D. The
result [Eqs. (D13) and (D14)] is

〈sα,m+ q|sα,m; k, q〉 = O

([
sα −m

sα

]|q|/2
)

+ . . . (C4)

The . . . consists of terms that contain additional powers of (sα −m)/sα or 1/sα. The same asymptotic expansion
characterizes the 〈sα,m|sα,m− q; k, q〉 in Eq. (C2).
We substitute the expansion (C4) into Ineq. (C2). Since T (k)(Eα, sα) ≤ O(1) ,

∣
∣
∣
∣

〈

T
(k)
q 6=0

〉

t

∣
∣
∣
∣
≤
∑

α,m

|Cα,m|2
{

O

([
sα −m

sα

]|q|/2
)

+ . . .

}

. (C5)

The . . . consists of terms that contain additional powers of (sα −m)/sα or 1/sα. We evaluate the bound for |q| ≥ 2 ,
q = 1 , and q = −1 sequentially.
Bounding the time-averaged expectation value when |q| ≥ 2: The moment condition (A1), together withM = O(N),

implies that 〈(sα −m)n/snα〉diag ≤ O(N−1) for n ≥ 1 [Eq. (B2)]. Therefore, since the Cα,m’s are normalized to one,
Ineq. (C5) implies that

∣
∣
∣
∣

〈

T
(k)
q

〉

t

∣
∣
∣
∣
≤ O(N−1) if |q| ≥ 2 . (C6)

The time average equals the thermal average (zero), to within O(N−1) corrections.
Bounding the time-averaged expectation value when q = +1: We return to the bound (C5). Since q = 1 , the leading

term averages to 〈[(sα −m)/sα]
1/2〉diag = O(N−1/2) in Eq. (C2). Therefore, we cannot immediately conclude that

the time average ≤ O(N−1) .
To demonstrate the time average’s smallness, we return to Eq. (C1). We expect the same terms to dominate as

when |q| ≥ 2 [Eq. (C3)]. Accordingly, Eq. (D13) approximates the Clebsch–Gordan coefficient:

〈sα,m+ 1|sα,m; k, 1〉 = −
√

k(k + 1)

2

√
sα −m

sα

[

1 +O

(
sα −m

sα

)

+ . . .

]

. (C7)

Substituting into Eq. (C1) yields

〈

T
(k)
q=1

〉

t
= −

√

k(k + 1)

2

∑

α,m

C∗
α,m+1Cα,m

√
sα −m

sα

[

1 +O

(
sα −m

sα

)

+ . . .

]

T (k)(Eα, sα) . (C8)

We can Taylor-expand everything except the
√
sα −m about (Eα = E, m = M, sα = M) . Since T (k)(Eα, sα) =

T (k)(E,M) +O
(
Eα−E

N

)
+O

(
sα−M

N

)
+ . . . [Eq. (B6)],

〈

T
(k)
q=1

〉

t
= −

√

k(k + 1)

2

∑

α,m

C∗
α,m+1Cα,m

√

sα −m

M

×
[

T (k)(E,M) +O

(
Eα − E

N

)

+O

(
m−M

N

)

+O

(
sα −M

N

)

+ . . .

]

. (C9)

The leading term, involving T (k)(E,M), is the problematic one [for proving that the time average is ≤ O(N−1)]:
The leading term looks to be of O(N−1/2). However, this term is actually proportional to 〈S+〉 ≡ 〈Sx〉 +
i 〈Sy〉, which vanishes by assumption. To prove the proportionality, we substitute the initial-state expansion

|ψ(0)〉 =
∑

α,m Cα,m|α,m〉 and the raising-operator equation S+|α,m〉 =
√

(sα −m)(sα +m+ 1) |α,m + 1〉 into

the expectation value 〈S+〉 =
∑

α,m C∗
α,m+1Cα,m

√

(sα −m)(sα +m+ 1) . Taylor-approximating
√
sα +m+ 1 =√

2M + 1
[
1 + O

(
sα−M

N

)
+O

(
m−M

N

)
+ . . .

]
yields

〈S+〉 =
√
2M + 1

∑

α,m

C∗
α,m+1Cα,m

√
sα −m

[

1 +O

(
sα −M

N

)

+O

(
m−M

N

)

+ . . .

]

= 0 . (C10)
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The leading-order term is proportional to the leading-order term in Eq. (C9). Therefore, at leading order,
〈

T
(k)
q=1

〉

t
= 0 .

The higher-order terms in Eq. (C9) can be shown to evaluate to ≤ O(N−1); one repeats the Cauchy-Schwarz argument
used for |q| ≥ 2. Therefore,

∣
∣
∣
∣

〈

T
(k)
q=1

〉

t

∣
∣
∣
∣
≤ O(N−1) . (C11)

Bounding the time-averaged expectation value when q = −1: The proof is almost the same as for q = 1 . Instead of
〈S+〉 = 0, we use 〈S−〉 ≡ 〈Sx〉 − i 〈Sy〉 = 0:

∣
∣
∣
∣

〈

T
(k)
q=−1

〉

t

∣
∣
∣
∣
≤ O(N−1) . (C12)

Thus, for all q 6= 0 , the time average equals the thermal average (zero), to within O(N−1) corrections.

Appendix D APPROXIMATION OF CLEBSCH–GORDAN COEFFICIENTS

Here, we approximate the Clebsch–Gordan coefficients 〈sα,m+ q|sα,m; k, q〉 when sα ≫ 1 and sα −m ≪ sα. As
throughout this paper, k, q = O(1).
The general expression for Clebsch–Gordan coefficients is [61, Eq. (2.41)]

〈s,m|s′,m′; k, q〉 = δm,m′+q (D1)

×
√

(2s+ 1) (s+ s′ − k)! (s− s′ + k)! (s′ + k − s)! (s+m)! (s−m)! (s′ −m′)! (s′ +m′)! (k − q)! (k + q)!

(s+ s′ + k + 1)!

×
∑

ℓ

(−1)ℓ

ℓ! (s′ + k − s− ℓ)! (s′ −m′ − ℓ)! (k + q − ℓ)! (s− k +m′ + ℓ)! (s− s′ − q + ℓ)!
.

The final line’s sum runs over all integer ℓ values for which every factorial’s argument is nonnegative. This expression
holds for m ≥ 0 and s′ > k. We set s′ = s, as in the time-averaged expectation value (18). We also set m = m′ + q
and drop the primes:

〈s,m+ q|s,m; k, q〉 =
√

(2s+ 1) (2s− k)! (k!)2 (s+m+ q)! (s−m− q)! (s−m)! (s+m)! (k − q)! (k + q)!

(2s+ k + 1)!

×
∑

ℓ

(−1)ℓ

ℓ! (k − ℓ)! (s−m− ℓ)! (k + q − ℓ)! (s− k +m+ ℓ)! (ℓ− q)!
. (D2)

This expression holds for m+ q ≥ 0 and s > k. Both conditions are satisfied in the regime of interest, wherein s≫ 1
and s−m≪ s, while k, q = O(1). The sum runs over the integers ℓ for which each factorial’s argument is nonnegative.
Together, the factorials imply three upper bounds and three lower bounds on ℓ:

ℓ ≤ k , (D3)

ℓ ≤ s−m, (D4)

ℓ ≤ k + q , (D5)

ℓ ≥ k − s−m, (D6)

ℓ ≥ q , and (D7)

ℓ ≥ 0 . (D8)

We initially assume that q ≥ 0. Consequently, Ineq. (D3) subsumes Ineq. (D5), and Ineq. (D7) subsumes Ineq. (D8).
As s≫ 1 and s−m≪ s, Ineq. (D6) encodes a trivially negative lower bound. The constraints on ℓ reduce to

ℓ ∈
{
q, q + 1, . . . ,min{k, s−m}

}
. (D9)
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Let us extract the asymptotics of the Clebsch–Gordan coefficient in the limit as s → ∞, assuming (s−m)/s→ 0.
For convenience, we change variables from m to ∆ := s−m. Grouping the s-dependent factors together yields

〈s,m+ q|s,m; k, q〉 =
∑

ℓ

(−1)ℓ k!
√

(∆− q)!∆! (k − q)! (k + q)!

ℓ! (k − ℓ)! (∆− ℓ)! (k + q − ℓ)! (ℓ− q)!

×
√

(2s+ 1)(2s− k)!(2s−∆+ q)! (2s−∆)!

(2s+ k + 1)!

1

(2s−∆− k + ℓ)!
. (D10)

The s-dependent factorials are all large in the limit of interest, so we approximate them using Stirling’s formula:

x! = exp

(

x ln x− x+
1

2
ln(2πx) +O(1/x) + . . .

)

. (D11)

We take the s-dependent expression’s natural log; expand in powers of 1/s; and exponentiate. The s-dependent factor
is

(2s)q/2−ℓ exp
(

O(∆/s) + · · ·
)

= (2s)q/2−ℓ
[

1 +O(∆/s) + · · ·
]

. (D12)

Therefore, the least possible ℓ value dominates the
∑

ℓ in Eq. (D10). By (D9), that ℓ value is q.
Let us approximate the

∑

ℓ with the ℓ = q term, while replacing the s-dependent factor with (D12). We revert
notation from ∆ to s−m. The result is

〈s,m+ q|s,m; k, q〉 = (−1)q

q!(2s)q/2

(
(s−m)! (k + q)!

(s−m− q)! (k − q)!

)1/2 [

1 +O

(
s−m

s

)

+ . . .

]

, q ≥ 0 . (D13)

Now, suppose that q < 0. The bounds (D9) on ℓ become ℓ ∈
{
0, 1, . . . ,min{k − q, s −m}

}
. In Eq. (D10), ℓ = 0

labels the sum’s dominant term. The s-dependent factor approximates to (2s)q/2[1 + O
(
s−m
s

)
+ . . . ] . Again, we

substitute into and approximate Eq. (D10). The result is

〈s,m+ q|s,m; k, q〉 = 1

|q|!(2s)|q|/2
(
(s−m+ |q|)! (k + |q|)!

(s−m)! (k − |q|)!

)1/2 [

1 +O

(
s−m

s

)

+ . . .

]

, q < 0 . (D14)

Appendix E THERMAL AVERAGE OF ROTATIONALLY INVARIANT OBSERVABLES AT M = 0

The main text illustrated potential anomalous thermalization first with rotationally invariant operators T
(0)
0 . Here,

we evaluate in greater detail the thermal average (22),

〈

T
(0)
0

〉

th
=

1

Z

∑

α,m

e−βEα T (0)(Eα, sα) . (E1)

The summand is a smooth function of Eα/N and sα/N when N ≫ 1 , by assumption. Therefore, we can replace the
sum over states with an integral over energy and spin quantum numbers (treated as continuous variables), weighted
by the density of states eSth :

〈

T
(0)
0

〉

th
≈ 1

Z ′

∫ Emax

Emin

dE
∫ smax

0

dS eSth(E,S)−βE T (0)(E ,S) . (E2)

The normalization condition 〈1〉th = 1 fixes the effective partition function Z ′ .
We evaluate the integral using Laplace’s method (the saddle-point approximation, but for real variables). For most

fixed values of E/N and S/N , the exponent Sth(E ,S) − βE = O(N) , so the integrand peaks steeply about this
function’s global maximum. The exponential’s argument is stationary where the argument’s first derivatives vanish:

∂Sth

∂E − β = 0 , and
∂Sth

∂S = 0. (E3)
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The first condition is the usual thermodynamic definition of the inverse temperature β. The thermodynamic entropy’s
concavity suggests that (E3) has a unique solution (E ,S) = (E∗,S∗), at which the exponent attains its global maximum.
We Taylor-approximate the exponent about this maximum:

Sth(E ,S) − βE ≈ Sth(E∗,S∗)− βE∗ +
1

2
(E − E∗, S − S∗)

T [∇2
HSth

]

∗
(E − E∗, S − S∗) . (E4)

[
∇2

HSth

]

∗
denotes the Hessian matrix of Sth(E ,S), evaluated at (E∗,S∗) . Equation (E2) reduces to

〈

T
(0)
0

〉

th
≈ 1

Z ′′

∫ Emax

Emin

dE
∫ smax

0

dS e−
1

2
(E−E∗,S−S∗)

T [−∇2

H
Sth]

∗

(E−E∗,S−S∗) T (0)(E ,S) . (E5)

We have absorbed into the effective partition function Z ′′ the leading term in the expansion (E4). Again, Z ′′ is fixed
by the normalization condition 〈1〉th = 1.
We can approximate, and assess the scalings of, several components of the integral (E5). First, according to conven-

tional thermodynamics, −∂2Sth/∂E2 ∝ 1/(heat capacity) is positive and O(N−1). Therefore, we expect
[
−∇2

HSth

]

∗

to be a positive-definite matrix whose elements are O(N−1) . Therefore, the Gaussian factor in (E5) has a peak width
of O(N1/2) . Second, by evaluating the LHS of 〈H〉th ≡ E , using Eq. (E5), we obtain E∗ ≈ E . Third, by evaluating the

LHS of 〈~S2〉th = O(N) ,10 also using Eq. (E5), we infer that S∗ ∈ [0, O(N1/2)] . Fourth, by the foregoing observations,
the Gaussian peaks far from the integration limits E = Emin, Emin and S = smax . Therefore, we can extend these
limits to ±∞ . Applying these conclusions to Eq. (E5) yields

〈

T
(0)
0

〉

th
≈ 1

Z ′′

∫ ∞

−∞

dE
∫ ∞

0

dS e−
1

2
(E−E,S−S∗)

T [−∇2

H
Sth]

∗

(E−E,S−S∗) T (0)(E ,S) . (E6)

Whereas the exponential peaks sharply, T (0)(E ,S) is smooth and varies slowly, by assumption. We therefore
Taylor-expand T (0)(E ,S) about E = E and S = 0:11

T (0) (E ,S) ≈ T (0) (E, 0) +O

(E − E

N

)

+O

( S
N

)

+ . . . (E7)

We argue for the nonzero O(S/N) term’s presence, for suitable Hamiltonians and suitable observables T (0) , in App. F.
We substitute the Taylor approximation (E7) into Eq. (E6), then perform standard multivariate Gaussian integra-

tion. The zeroth-order term in Eq. (E7) integrates to T (0)(E, 0) , by the integral’s normalization. The O([E −E]/N)
term integrates to zero, by the E integral’s symmetry. The O(S/N) term does not integrate to zero similarly, because
the S integral ends at S = 0 . However, the Gaussian has a width of O(N1/2) . Hence S averages to O(N1/2) , and the
O(S/N) term in Eq. (E7) averages to O(N−1/2):

〈

T
(0)
0

〉

th
≈ T (0) (E, 0) +O

(

N−1/2
)

. (E8)

Appendix F TAYLOR EXPANSION OF T (k)(E ,S) ABOUT S = 0

The potential anomalous thermalization relies on two claims about the smooth function T (k)(E ,S): Suppose that

k ≥ 0 is even and E = O(N) . For some Hamiltonians H and observables T
(k)
q , T (k)(E ,S) can have the Taylor

approximation about S = 0

T (k)(E ,S) = O(1) +O(S/N) . (F1)

Furthermore, if k > 0, then the O(1) term vanishes. Here, we argue for the claims. If k > 0, a deductive argument
supports the lack of an O(1) term. No such arguments preclude (i) the O(1) term when k = 0 or (ii) the O(S/N)

10 We evaluate 〈~S2〉th by replacing the T (0)(E,S) in Eq. (E5)
with S(S + 1) . We can understand the O(N) through the ther-
mal state’s sharing of scaling behaviors with the initial state:
〈~S2〉th ∼ 〈~S2〉0 =

〈

S2
x + S2

y + S2
z

〉

0
= var0(Sx) + var0(Sy) +

var0(Sz) + 〈Sz〉20 . Each of the first three terms is O(N), by the
variance conditions (11)–(12). The final term vanishes because

M = 0 in this appendix. Hence
〈

~S2
〉

th
= O(N) .

11 Strictly speaking, one should Taylor-expand T (0)(E,S) about the
maximum, S = S∗, rather than about S = 0. However, T (0) is
sufficiently smooth, and S∗ ∈ [0, O(N1/2)] is sufficiently close to
0, that the two expansions yield identical results.
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term ever, to our knowledge. Hence there is no reason to believe that such terms are absent. Beyond this “everything
not forbidden is compulsory” reasoning, we also argue for the O(S/N) term’s plausibility.

Argument for the absence of any O(1) term when k > 0: When sα = 0, the system lacks spin angular momentum
and so any preferred direction. Therefore, all rotationally noninvariant operators’ expectation values must vanish.

T
(k)
q is rotationally noninvariant for all q, because k > 0. To identify the implications for T (k)(E , 0) , we evaluate

〈α,m|T (k)
q |α,m〉 (which vanishes) on an sα = 0 eigenstate |α,m〉 .We invoke the Wigner–Eckart theorem (13) and the

non-Abelian ETH (14). The associated Clebsch–Gordan coefficient equals one. Hence 〈α,m|T (k)
q |α,m〉 = T (k)(Eα, 0) .

The LHS vanishes, as argued above. Hence the O(1) term T (k)(E , 0) = 0 .

Argument for the O(S/N) term in Eq. (F1): Bound states underlie this argument. To provide intuition, we
temporarily address a more familiar setting: a lattice in which only the global particle-number operator, N , is
conserved. Consider a global state |ψ〉 of uniformly distributed two-particle bound states. Wherever a particle
appears, another particle appears beside it. Denote by Nj the site-j particle-number operator. For an arbitrary j, we
estimate the correlator 〈ψ|NjNj+1|ψ〉.
The correlator equals the joint probability p(particle at site j, particle at site j + 1). Semiclassically, this joint

probability equals p(particle at site j + 1|particle at site j) × p(particle at site j). The latter probability equals
O(〈ψ|N |ψ〉/N) , by the state’s uniformity. The conditional probability is O(1), because the particles are bound.
Hence the joint probability p(particle at site j, particle at site j + 1) = O(〈ψ|N |ψ〉/N) .

We reason about noncommuting charges by analogy with the preceding argument. First, suppose that k ≥ 2. Let
the Hamiltonian have a finite-energy-density eigenstate |α,m=sα〉 that contains bound clusters of k z-type charges.
For example, ferromagnetic couplings can cause neighboring spins to point in the same direction. If that direction
is ẑ, the state contains bound z-charges. If H has some degree of uniformity, so can the energy eigenstate. sα is
essentially the amount of charge in the global system.

A local observable of interest has the form

T
(k)
0 ∼ sj1,z sj2,z . . . sjk,z . (F2)

Recall that sj,z denotes qubit j’s z-type spin operator. This T
(k)
0 has an expectation value, in a joint eigenstate

|α,m=sα〉, that is essentially a k-point correlator:

〈α, sα|T (k)
0 |α, sα〉 ∼ 〈α, sα|sj1,z sj2,z . . . sjk,z|α, sα〉 . (F3)

Similarly to in the particle-number example, this correlator is essentially the joint probability

p(site j1 contains a quantum of z-type charge, site j2 contains a quantum of z-charge, . . . ,

site jk contains a quantum of z-charge) . (F4)

Semiclassically, this joint probability equals

p(site j2 contains a quantum of z-charge, . . . , site jk contains a quantum of z-charge

|site j1 contains a quantum of z-charge)× p(site j1 contains a quantum of z-charge) . (F5)

The final probability is O(sα/N) , by the state’s uniformity. The conditional probability is O(1) , if j1 lies close to
the other j’s, because the charges form bound clusters. Hence the joint probability is O(sα/N) . So, semiclassically,

〈α, sα|T (k)
0 |α, sα〉 = O(sα/N) . The LHS is essentially T (k)(Eα, sα) , by the Wigner–Eckart theorem (13) and the

non-Abelian ETH (14). Hence T (k)(Eα, sα) = O(sα/N) .

If k = 0, a similar argument concerns a local observable T
(0)
0 = ~sj ·~sj′ . Start with a “resonating valence bond” (RVB)

state, formed from superpositions of local dimer coverings (local pairings of the qubits into singlets). This state has

zero total spin (sα = 0). The expectation value
〈
T

(0)
0

〉
= 〈−~sj · ~sj′ 〉 quantifies the probability that qubits j and j′ form

a singlet. This probability is O(1) in the RVB state, if j lies close to j′. Imagine that a few of the singlets are broken—a
small fraction ρ. Furthermore, the broken singlets are distributed uniformly throughout the system. The resulting

state has nonzero but small total spin: sα/N ∼ ρ. The expectation value
〈
T

(0)
0

〉
= 〈~sj · ~sj′ 〉 = O(1) + O(sα/N) .

The second term equals the probability that the j-and-j′ singlet is broken. Hence, by the same logic as for k ≥ 2,
T (0)(Eα, sα) = O(1) +O(sα/N) .
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Appendix G SECOND OPPORTUNITY FOR ANOMALOUS THERMALIZATION

This appendix details a second opportunity for anomalous thermalization when M = 0. We construct a time-

independent state |ψ(0)〉 that has the properties stipulated in our setup. Then, we focus on observables T
(k)
q=1, for an

even k ≥ 2 . The time average 〈T (k)
1 〉t , we show, differs from the thermal average 〈T (k)

1 〉th at the anomalously large

O(N−1/2) .
Consider an initial state |ψ(0)〉 in a Hamiltonian eigenspace labeled by α = A . Let the eigenenergy EA = O(N)

and spin quantum number sA = O(N1/2) . For some to-be-specified magnetic spin quantum number m̄ ∈ [−sA, sA] ,

|ψ(0)〉 := 1

2
(|A, m̄〉+ |A, m̄+ 1〉+ |A,−m̄〉 − |A,−m̄− 1〉) . (G1)

One can check directly that M = 〈Sz〉 = 0 and var(Sz) = 1
2 [m̄

2 + (m̄ + 1)2] = O(N) . That 〈Sx,y〉 = 0 follows
from (i) the decompositions of Sx and Sy in terms of S± and (ii) the ladder operators’ actions on an Sz eigenstate,

S±|A,m〉 =
√

sA(sA + 1)−m(m± 1) |A,m± 1〉 . The same ingredients imply that 〈S2
x,y〉 = O(s2A)+O(m̄2) = O(N);

hence var(Sx,y) = O(N) . The energy variance, var(H), vanishes by construction. Hence |ψ(0)〉 has the properties
stipulated in the main text’s setup section, including the variance conditions (10)–(12).

Having prescribed an initial state, we shift focus to an observable T
(k)
q . Let q = 1 . To calculate the time-averaged

expectation value, we substitute the Cα,m’s from Eq. (G1) into Eq. (18):

〈

T
(k)
1

〉

t
=

1

4

(

〈sA, m̄+ 1|sA, m̄; k, 1〉 − 〈sA,−m̄|sA,−m̄− 1; k, 1〉
)

T (k)(EA, sA) . (G2)

The Clebsch–Gordan coefficients obey the symmetry relation

〈sα,m+ 1|sα,m; k, 1〉 = (−1)k+1〈sα,−m|sα −m− 1; k, 1〉 (G3)

[61, Eq. (2.42)]. Consequently, if k is odd, the time average (G2) vanishes. Since S± are T
(1)
±1 operators, we have

corroborated our earlier conclusion that 〈Sx,y〉 = 0 .
Suppose that k is greater than 0 (recall that k = 0 in the first opportunity for anomalous thermalization). and is

even. The symmetry (G3) reduces the time average (G2) to

〈

T
(k)
1

〉

t
=

1

2
〈sA, m̄+ 1|sA, m̄; k, 1〉 T (k)(EA, sA) . (G4)

In App. F, we Taylor-approximated the smooth function T (k)(Eα, sα) about sα = 0 . The Taylor approximation, we
argued, can have the form T (k)(EA, sA) = O(sα/N) 6= 0. We can choose m̄ to make Eq. (G4)’s Clebsch–Gordan
coefficient be O(1) . In fact, the Clebsch–Gordan coefficient is O(1) for most choices of m̄ ∈ [−sA, sA] that are not too
close to ±sA. Therefore, substituting into Eq. (G4) yields

〈

T
(k)
1

〉

t
= O

(

N−1/2
)

. (G5)

The thermal average 〈T (k)
1 〉th vanishes, because q 6= 0, by Eq. (16). Hence the time average differs from the thermal

average at O(N−1/2) .
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