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Machine learning outperforms 
thermodynamics in measuring 
how well a many‑body system 
learns a drive
Weishun Zhong1,10, Jacob M. Gold2,10, Sarah Marzen1,3, Jeremy L. England1,4 & 
Nicole Yunger Halpern 5,6,7,8,9*

Diverse many‑body systems, from soap bubbles to suspensions to polymers, learn and remember 
patterns in the drives that push them far from equilibrium. This learning may be leveraged for 
computation, memory, and engineering. Until now, many‑body learning has been detected 
with thermodynamic properties, such as work absorption and strain. We progress beyond these 
macroscopic properties first defined for equilibrium contexts: We quantify statistical mechanical 
learning using representation learning, a machine‑learning model in which information squeezes 
through a bottleneck. By calculating properties of the bottleneck, we measure four facets of many‑
body systems’ learning: classification ability, memory capacity, discrimination ability, and novelty 
detection. Numerical simulations of a classical spin glass illustrate our technique. This toolkit exposes 
self‑organization that eludes detection by thermodynamic measures: Our toolkit more reliably and 
more precisely detects and quantifies learning by matter while providing a unifying framework for 
many‑body learning.

Many-body systems can learn and remember patterns of drives that propel them far from equilibrium. Such 
behaviors have been predicted and observed in many settings, from charge-density  waves1,2 to non-Brownian 
 suspensions3–5, polymer  networks6, soap-bubble  rafts7, and  macromolecules8. Such learning holds promise for 
engineering materials capable of memory and computation. Detecting such learning can also help us understand 
granular systems, e.g., infer the history of forces experienced by an asteroid core. This potential for applications, 
with experimental accessibility and ubiquity, have earned these classical nonequilibrium many-body systems 
much attention  recently9.

A classical, randomly interacting spin glass exemplifies driven matter that learns. Let us call a set {�A, �B, �C} of 
magnetic fields a drive. Consider randomly selecting a field from the drive and applying it to the spin glass, then 
repeating this process many times. The spins absorb work from the fields. The power absorbed shrinks adaptively, 
in a certain parameter regime: The spins migrate toward a corner of configuration space where their configura-
tion approximately withstands the drive’s insults. If new fields are imposed, the absorbed power spikes. If fields 
from {�A, �B, �C} are reimposed, the absorbed power spikes again, but less than under the unfamiliar  fields10. The 
spin glass recognizes the original drive.

A simple, low-dimensional property of the material—absorbed power—distinguishes drive inputs that fit a 
pattern from drive inputs that do not. This property reflects a structural change in the spin glass’s configuration. 
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The change is long-lived and not easily erased by new stimuli. For these reasons, we say that the material has 
learned the drive.

Many-body learning has been quantified with properties commonplace in thermodynamics. Examples include 
power, as explained above, and strain in polymers that learn stress amplitudes. Such thermodynamic diagnoses 
offer insights but suffer from two shortcomings. First, the thermodynamic properties vary from system to system. 
For example, work absorption characterizes the spin glass’s learning; strain characterizes non-Brownian suspen-
sions’. A more general approach would facilitate comparisons and standardize analyses. Second, thermodynamic 
properties were defined for macroscopic equilibrium states. Such properties do not necessarily describe far-from-
equilibrium systems’ learning optimally.

Separately from many-body systems’ learning, machine learning has flourished over the past  decade11,12. 
Machine learning has helped elucidate how natural and artificial systems learn. Neural networks developed 
over the past decade can undergo representation learning13 (Fig. 1a). Such a neural network receives a high-
dimensional variable X. Examples include a sentence missing a word, e.g., “The  is shining.” The neural 
network compresses the input into a low-dimensional latent variable Z, e.g., word types and relationships. The 
neural network decompresses Z into a prediction Ŷ  of a high-dimensional variable Y. In the example, Y can be 
the word missing from the sentence, and Ŷ  can be “sun.” The size of the bottleneck Z controls a tradeoff between 
the memory consumed and the prediction’s accuracy. We call the neural networks that perform representation 
learning bottleneck neural networks.

In this paper, we construct and deploy a bottleneck neural network to quantify how much many-body systems 
learn about the patterns of drives that force them: We use representation learning to learn how much many-body 
systems learn. Our measurement protocols share the following structure (Fig. 2b): The many-body system is 
trained with a drive (e.g., fields �A , �B , and �C ). Then, the system is tested (e.g., with a field �D ). Training and test-
ing are repeated in many trials. Configurations realized by the many-body system are used to train a bottleneck 
neural network via unsupervised learning. Finally, we calculate properties of the neural network’s bottleneck. We 

Figure 1.  Parallel between two structures: (a) Bottleneck neural network, which performs representation 
learning. (b) Nonequilibrium-statistical-mechanics problem.

Figure 2.  Schematic: (a) illustrates the protocol used to train the many-body system on a drive {A,B,C} . 
(b) sketches how the many-body system is driven into configurations on which the neural network trains. 
Analyzing the neural network’s latent space elucidates how much the many-body system has learned about its 
drive.
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illustrate with numerical simulations of the spin glass, whose learning has been detected with work  absorption10. 
Our methods generalize to other platforms, however. This machine-learning toolkit offers three advantages. 

1. Bottleneck neural networks register learning behaviors more thoroughly and precisely than work absorption.
2. Our framework encompasses a wide class of strongly driven many-body systems. Although we illustrate with 

the example of a spin glass, the framework does not rely on any particular thermodynamic property tailored 
to spins. Our neural network scores a many-body system’s learning behaviors with dimensionless numbers 
that can be compared across platforms.

3. Our approach unites machine learning with learning by many-body systems. The union is conceptually 
satisfying.

We measure four facets of many-body learning: classification ability, memory capacity, discrimination ability, 
and novelty detection. Our techniques, however, can be extended to other facets.

Results
First, we introduce our bottleneck neural network. Then, we define the spin glass on which we will test our 
machine-learning toolkit. We finally show how to quantify, using representation learning, how much a many-
body system learns about a drive.

Bottleneck neural network. Representation learning, we argue, shares its structure with a problem in 
nonequilibrium statistical mechanics (Fig.  1b). Consider a many-body system subject to a strong drive. The 
system’s microstate occupies a high-dimensional space, like the input X to a bottleneck neural network. A mac-
rostate synopsizes the microstate in a few numbers, such as particle number and magnetization. This synopsis 
parallels the latent space Z. If the many-body system has learned the drive, the macrostate encodes the drive. 
One may reconstruct the drive from the macrostate, as a bottleneck neural network reconstructs Y from Z. See 
Ref.14 for a formal parallel between representation learning and equilibrium thermodynamics.

We construct a neural network inspired by this parallel. As the macrostate informs computations in the 
statistical-mechanics problem described above, the neural network’s bottleneck informs our computations. One 
might initially aim for a bottleneck neural network that predicts drives from configurations X. But such a neural 
network would undergo supervised learning, if constructed according to the state of the art of when this paper 
was written. During supervised learning, the neural network receives tuples (configuration of the many-body 
system, label of drive that generated the configuration). The drive labels are not directly available to the many-
body system. So successful predictions by neural network predictions would not necessarily reflect only learning 
by the many-body system. Hence we design a bottleneck neural network that performs unsupervised learning, 
receiving only configurations.

This neural network is a variational autoencoder15–17, a generative model: It receives samples x from a distri-
bution over the possible X values, creates a variational model for the distribution, and samples from the model. 
The model is refined via Bayesian variational inference (see Supplementary Note I for an overview). The model’s 
parameters are optimized via backpropagation during training.

Our variational autoencoder has five fully connected hidden layers, with neuron numbers 200-200-(number 
of Z neurons)-200-200. We usually restrict the latent variable Z to 2–4 neurons. This choice enables us to visualize 
the latent space and suffices to quantify the spin glass’s learning. Growing the many-body system may require 
more latent dimensions, as may growing the number of drives whose patterns the many-body system must learn. 
But our studies suggest that the number of dimensions needed ≪ the system size.

Figure 3 depicts the latent space Z. Each neuron corresponds to one axis and represents a continuous-valued 
real number. The latent space was formed via the protocol detailed below, in the section “How to quantify a 
many-body system’s learning of a drive, using representation learning.” To synopsize, we trained the spin glass 
on one drive in each of 1000 trials; trained the spin glass in another drive in each of 1000 trials; and so on, for five 
drives total. On the end-of-trial spin-glass configurations, the neural network was trained. The neural network 
compressed each configuration to a dot in latent space. We colored each dot according to which drive produced 
the corresponding configuration. We added the colors after the neural network’s training, so the neural network 
received no configurations’ drive labels. Same-color dots cluster together, so the spin glass distinguished the 
drives, as recognized by the neural network.

One might wonder whether our toolkit requires deep learning. Could simpler algorithms detect and measure 
many-body learning as sensitively? Supplementary Note II responds negatively. We compare our neural network 
with simpler competitors that perform unsupervised learning: a single-layer linear neural network, related to 
principal-component  analysis18, and a clustering algorithm. The bottleneck neural network outperforms both 
competitors. (Competitors that perform supervised learning would enjoy an unfair advantage and, as explained 
above, would not reflect the many-body’s system learning faithfully.)

Spin glass. A spin glass exemplifies the many-body  learner10. We illustrate our machine-learning toolkit by 
simulating a glass of N = 256 classical spins. The jth spin occupies one of two possible states: sj = ±1.

The spins couple together and experience an external magnetic field: Spin j evolves under a Hamiltonian

(1)Hj(t) =
∑

k �=j

Jjksjsk + Aj(t)sj ,
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and the spin glass evolves under H(t) = 1
2

∑N
j=1 Hj(t) , at time t. We call the first term in Eq. (1) the interaction 

energy and the second term the field energy. The couplings Jjk = Jkj are defined through an Erdös-Rényi random 
network: Spins j and k have some probability p of interacting, for all j and k  = j . Each spin couples to eight 
other spins, on average. The nonzero couplings Jjk are selected according to a normal distribution of standard 
deviation 1.

Aj(t) denotes the magnitude and sign of the external field experienced by spin j at time t. The field always 
points along the same direction (the z-axis), so we omit the arrow from �Aj(t) . We will simplify the notation 
for the field from {Aj(t)}j to A (or B, etc.). Each Aj(t) is selected according to a normal distribution of standard 
deviation 3. The field changes every 100 s.

To train the spin glass, we construct a drive by constructing a set {A,B, . . .} of random fields. We randomly 
select a field from the set, then apply the field for 100 s. This selection-and-application process is performed 300 
times (Fig. 2a).

The spin glass exchanges heat with a bath at a temperature T = 1/β . We set Boltzmann’s constant to kB = 1 . 
Energies are measured in Kelvins (K). To flip, a spin must overcome a height-B energy barrier. Spin j tends to flip 
at a rate ωj = eβ[Hj(t)−B]/(1 s). This rate has the form of Arrhenius’s law and obeys detailed balance. The average 
spin flips once per 107 s. We model the evolution with discrete 100-s time intervals, using the Gillespie algorithm.

The spins absorb work when the field changes, as from {Aj(t)} to {A′
j(t)} . The change in the spin glass’s energy 

equals the work absorbed by the spin glass: W :=
∑N

j=1

[

A′
j(t)− Aj(t)

]

sj . Absorbed power is defined as 
W/(100 s) . The spin glass dissipates heat by losing energy as spins flip.

The spin glass is initialized in a uniformly random configuration C . Then, the spins relax in the absence of any 
field for 100,000 s. The spin glass navigates to near a local energy minimum. If a protocol is repeated in multiple 
trials, all the trials begin with the same configuration C.

In a certain parameter regime, the spin glass learns its drive effectively, even according to the absorbed 
 power10. Consider training the spin glass on a drive {A,B,C} . The spin glass absorbs much work initially. If the 
spin glass learns the drive, the absorbed power declines. If a dissimilar field D is then applied, the absorbed 
power spikes. If the familiar fields are reapplied, the absorbed power spikes again, but less. The spin glass learns 
effectively in the “Goldilocks regime” of β = 3 K−1 and B = 4.5  K10: The temperature is high enough, and the 
barriers are low enough, that the spin glass can explore phase space. But T is low enough, and the barriers are 
high enough, that the spin glass is not hopelessly peripatetic.

Spins can fail to learn nontrivially, yet adopt configurations that reflect a drive. For example, the spins can 
be entrained to the field. The spins would bear the field’s stamp as silly putty bears a thumbprint. A thumbprint 
vanishes as soon as the silly putty is smoothed. Hence the silly putty undergoes no long-lived structural change 
that resists erasure; the silly putty does not learn robustly. Alternatively, most of the spins can remain frozen, while 
only a few flip. One might infer the drive from the few flippable spins, though most of the glass would contain no 
information about the drive. We confirm that our spin glass does not exhibit these behaviors, in Supplementary 
Note III: the spin glass’s learning is nontrivial.

How to quantify a many‑body system’s learning of a drive, using representation learning. We 
detect and quantify four facets of learning: classification ability, memory capacity, discrimination, and novelty 
detection. One classifies a stimulus by answering the question “Which of the possible stimuli is this one?” A 

Figure 3.  Visualization of latent space, Z: Z consists of neurons Z1 , represented along the x-axis, and Z2 , 
represented along the y-axis. A variational autoencoder formed Z while training on configurations assumed by 
a 256-spin glass exposed to different drives in different trials. The neural network mapped each configuration 
to a dot in latent space. After the training completed, each dot was colored according to which drive produced 
thecorresponding configuration.
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system’s memory capacity is the number of fields that the system can remember. (We use the term “memory 
capacity” in the physical sense of Ref.9. A more specific, technical definition of “memory capacity” is used in 
reservoir  computing19.) One performs novelty detection by answering the question “Have I encountered this 
stimulus before?” One discriminates between stimuli A and B by answering “How much of the present stimulus 
consists of A, and how much consists of B?”

Below, we illustrate the application of our toolkit by quantifying classification ability. The Methods show how 
to apply our toolkit to the other three facets of learning. Further facets may be quantified similarly. Our machine-
learning approach detects and measures learning more reliably and precisely than absorbed power does. Code 
used and data generated are accessible at Ref.20.

A system classifies a stimulus when identifying the stimulus as one of many possibilities. First, we detail the 
protocol run on the spin glass. Second, we show how to measure the spin glass’s classification ability using rep-
resentation learning. Third, we measure the spin glass’s classification ability using absorbed power. The neural 
network, we find, reflects more of the spin glass’s classification ability than absorbed power does.

The spin glass underwent the following protocol. We generated random fields A, B, C, D, and E. From 4 of 
the fields, we formed the drive D1 := {A,B,C,D} . On the drive, we trained the spin glass in each of 1000 trials. 
In each of 1000 other trials, we trained a refreshed spin glass on a drive D2 := {A,B,C,E} . We repeated this 
process for each of the 5 possible 4-field drives. Ninety percent of the trials were randomly selected for training 
the neural network. The rest were used for testing.

We measured the spin glass’s ability to classify drives, using the neural network, as follows: We fixed a time 
t, then identified the configurations occupied by the spin glass at t in the spin-glass-training trials. On these 
configurations, we trained the neural network. The neural network populated the latent space with dots (simi-
larly to in Fig. 3). The dots generated by drive Dj approximated a probability density Pj , for all j = 1, 2, 3, 4, 5.

We then gave the neural network a time-t configuration from a test trial. The neural network compressed the 
configuration into a latent-space point. We calculated the probability that drive Dj generated that point, using Pj , 
for all j. The highest-probability drive most likely generated the point, by maximum-likelihood  estimation21. We 
performed this testing and estimation for each trial in the test data. The fraction of trials in which the estimation 
succeeded constitutes the score. The score is plotted against t in Fig. 4 (blue, upper curve).

We compare with the classification ability attributed to the spin glass by the absorbed power: We fixed a 
drive Dj and a time t. We identified the neural-network-training trials in which Dj was applied at time t. From 
the power absorbed then, we formed a histogram. We performed this process for each drive Dj . Then, we took 
a trial from the test set and identified the power absorbed at t. We inferred which drive most likely produced 
that power, applying maximum-likelihood estimation to the histograms. The guess’s score appears as the orange, 
lower curve in Fig. 4.

A score maximizes at 1.00 if the drive is always guessed accurately. The score is lower-bounded by the 
random-guessing value 1/(number of drives) = 1/5 . In Fig. 4, each score grows over tens of field switches. The 
absorbed-power score begins at 0.20 and comes to fluctuate around 0.25. The neural network’s score comes 
to fluctuate slightly below 1.00. (The neural network’s score begins slightly above 0.20. One might expect the 
score to begin at 0.20: At t = 0 , the spin glass has not experienced the drive, so the neural network receives no 
information about the drive, so the neural network can guess the drive only randomly. The distance from 0.20, 
we expect, comes from stochasticity of three types: the spin glass’s initial configuration, maximum-likelihood 

Figure 4.  Quantification of a many-body system’s classification ability: A spin glass classified a drive as one of 
five possibilities. The blue, upper curve represents the system’s classification ability, as quantified by a bottleneck 
neural network. The orange, lower curve represents the classification ability as quantified with the absorbed 
power. The neural-network score rises to near the maximum, 1.00. The thermodynamic score exceeds the 
random-guessing score, 1/5, slightly. The neural network therefore detects more of the spins’ classification 
ability.
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estimation, and stochastic gradient descent. Stochasticity of only the first two types affects the absorbed-power 
score.) Hence the neural network detects more of the spin glass’s classification ability than the absorbed power 
does, in addition to suggesting a means of quantifying the classification ability rigorously. Having illustrated 
our machine-learning toolkit with classification, we detail applications to memory capacity, novelty detection, 
and discrimination in the Methods.

Discussion
We have detected and quantified a many-body system’s learning of drive patterns, using representation learn-
ing. Our toolkit affords greater sensitivity than absorbed power, a representative of the thermodynamic toolkit 
applied to detect many-body learning until now. Our technique quantifies classification ability, memory capacity, 
discrimination ability, and novelty detection. The toolkit is general, not relying on whether the system exhibits 
magnetization or strain or another thermodynamic response. The Methods establish the feasibility of applying 
our toolkit in a variety of experiments and simulations. This approach provides a framework for understanding 
memory—a basic, widely realized, and usable trait—in a unified manner across classical statistical mechanics. 
This framework opens several opportunities for future research; we detail two below.

First, our toolkit is well-suited to more open problems about many-body learners. An example problem 
concerns the soap-bubble raft in Ref. 7. Experimentalists trained a raft of soap bubbles with an amplitude-γt 
strain. The soap bubbles’ positions were tracked, and variances in positions were calculated. No such measures 
distinguished trained rafts from untrained rafts; only stressing the raft and reading out the strain  could7,22. 
Our bottleneck neural network is well-poised to identify microscopic properties that distinguish trained from 
untrained rafts. Similarly, representation learning may facilitate the detection of active matter. Self-organization 
is detected now through simple, large-scale, easily visible  signals23. Bottleneck NNs could identify patterns invis-
ible in thermodynamic measures.

Second, in statistical mechanics, we parameterize macrostates with volume, energy, magnetization, and other 
thermodynamic variables. Macrostates in statistical mechanics parallel the latent space in our bottleneck neural 
network (Fig. 1). Which variables parameterize the neural network’s latent space? Latent space may suggest 
definitions of new thermodynamic variables, or hidden relationships amongst known thermodynamic variables.

We illustrate by training the spin glass with a drive {A,B,C} in each of many trials. On the end-of-trial con-
figurations, we trained the neural network. Two latent-space directions have physical significances, as shown in 
Fig. 5: the absorbed power grows along the diagonal from the bottom righthand corner to the upper lefthand 
corner (Fig. 5a). The magnetization grows radially (Fig. 5b). The directions are nonorthogonal, suggesting a 
nonlinear relationship between the thermodynamic variables. Convention biases physicists toward measuring 
volume, magnetization, heat, work, etc. The neural network may identify new macroscopic variables better-suited 
to far-from-equilibrium statistical mechanics, or nonlinear relationships amongst thermodynamic variables.

We can translate, as follows, between conventional thermodynamic variables and the latent-space directions 
z1 and z2 : List the conventional thermodynamic variables expected to be relevant: v1, v2, . . . , vn . For example, 
v1 may denote the work absorption, and v2 may denote the magnetization. The neural network populates the 
latent space with dots during training. Each dot corresponds to vj ’s calculable from the corresponding many-
body configuration. A feedforward neural network can decompose each zk as a function of the vj’s. We will have 

Figure 5.  Correspondence of latent-space directions to thermodynamic quantities: A variational autoencoder 
trained on the configurations assumed by a spin glass exposed to fields A, B, and C. We have color-coded 
each latent-space plot, highlighting how a thermodynamic property changes along some direction. In (a), the 
absorbed power grows from the bottom righthand corner to the upper lefthand corner. In (b), the magnetization 
grows radially.
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decomposed the latent-space variables in terms of thermodynamic variables, translating between the two. A 
bottleneck neural network could uncover new theoretical physics, as discussed in, e.g., Refs.24–26.

Methods
In the Results, we applied our machine-learning toolkit to quantify classification ability. Here, we apply the 
toolkit to quantify three more facets of learning: memory capacity, discrimination, and novelty detection. We 
also demonstrate the feasibility of applying our toolkit to experiments.

Memory capacity: How many fields can the system remember? How many fields can a many-body 
system remember? A bottleneck neural network, we find, registers a greater memory capacity than absorbed 
power registers. Hence the neural network reflects statistical mechanical learning, at high field numbers, that the 
absorbed power does not.

We illustrate by constructing 50 random fields. We selected 40 to form a drive D1 , selected 40 to form a drive 
D2 , and repeated until forming five drives. We trained the spin glass on drive Dj in each of 1000 trials, for each 
of j = 1, 2, . . . 5 . Ninety percent of the trials were designated as neural-network-training trials; and 10%, as 
neural-network-testing trials.

The choice of 50 fields is explained in Supplementary Note IV: 50 fields exceed the spin-glass capacity reg-
istered by the absorbed power. We will show that 50 fields do not exceed the capacity registered by the neural 
network: The neural network identifies spin-glass learning missed by the absorbed power.

We used representation learning to quantify the spin glass’s capacity as follows. For a fixed time t, we collected 
the configurations occupied by the spin glass at t in the neural-network-training trials. On these configurations, 
the neural network performed unsupervised learning. The neural network populated its latent space with dots 
that formed five clusters. The cluster sourced by drive Dj approximated a probability density Pj . We fed the neu-
ral network the configuration occupied at t during a test trial. The neural network formed a new dot in latent 
space. We estimated the probability that drive Dj formed the drive, using Pj , for each j. The greatest probability 
stemmed from the drive Dj that most likely, according to the neural network, produced the point. That is, we 
applied maximum-likelihood estimation. The fraction of test trials in which the neural network guessed correctly 
constitutes the neural network’s score. The score is plotted against t in Fig. 6, as the blue, upper curve.

The neural network’s score is compared with the absorbed power’s score, calculated as follows. For a fixed 
time t, we identified the power absorbed at t in each neural-network-testing trial. We histogrammed the power 
absorbed when Dj was applied at t, for each j = 1, 2, . . . , 5 . We then identified the power absorbed at t in a test 
trial. Comparing with the histograms, we inferred which drive was most likely being applied. We repeated this 
inference with each other test trial. In which fraction of the trials did the absorbed power identify the drive cor-
rectly? This number forms the absorbed power’s score. The score is plotted as the lower, orange curve in Fig. 6.

The higher the score, the greater the memory capacity attributed to the spin glass. The absorbed power identi-
fies the drive in approximately 20% of the trials, as would random guessing. The score remains approximately con-
stant, because the number of fields exceeds the spin-glass capacity measured by the absorbed power. In contrast, 
the neural network’s score grows over ≈ 150 changes of the field, then plateaus at ≈ 0.450 . The neural network 
points to the wrong drive most of the time but succeeds significantly more often than the absorbed power. Hence 
representation learning uncovers more of the spin glass’s memory capacity than absorbed power measure does.

Figure 6.  Quantification of memory capacity: A spin glass was trained on one of five drives in each of many 
trials. Each drive was formed from 40 fields selected from 50 random fields. The upper, blue line represents the 
memory capacity attributed to the spin glass by a bottleneck neural network. The lower, orange line represents 
the memory capacity attributed by absorbed power.
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In summary, a many-body system’s memory capacity can be quantified as the greatest number of fields in 
any drive on which maximum-likelihood estimation, based on a neural network’s latent space, scores better 
than random guessing.

Discrimination: How new is this field? Suppose that a many-body system learns fields A and B, then 
encounters a field that interpolates between them. Can the system recognize that the new field contains familiar 
constituents? Can the system discern how much A contributes and how much B contributes? The answers char-
acterize the system’s discrimination ability, which we quantify with a maximum-likelihood-estimation score. 
Estimates formed from the neural network’s latent space reflect more of the system’s discriminatory ability than 
do estimates formed from absorbed power.

We illustrate with the spin glass, forming a drive {A,B,C} . Each trial began with 300 subsequent time inter-
vals. In each interval, a field was selected randomly from the drive and applied. The spin glass was then tested 
with a linear combination Dw = wA+ (1− w)B . The weight w varied from 0 to 1, in steps of 1/6, across trials.

We measured the spin glass’s discrimination using the neural network as follows. We identified the final 
configuration assumed by the spin glass in each  trial. These configurations were split into neural-network-
training data and neural-network-testing data. The training trials ended with configurations on which the neural 
network was trained. Then, the neural network received a configuration with which a neural-network-testing 
trial ended. The neural network mapped the configuration to a latent-space point. We inferred which field most 
likely generated that point, using maximum-likelihood estimation on the latent space. We tested the neural net-
work with all the test trials. The fraction of maximum-likelihood estimates that were correct formed the neural 
network’s score.

Similarly, we measured the spin glass’s discrimination using the absorbed power. We fixed a value of w, then 
identified the neural-network-training trials that ended with the application of Dw . We identified the power P 
absorbed by the spin glass after the Dw application. We histogrammed P , inferring the probability that, if shown 
Dw for a given w, the spin glass will absorb an amount P of power. We formed a histogram for each value of w. 
Then, we calculated the power absorbed during a neural-network-testing trial. We inferred which field most likely 
generated that point, applying maximum-likelihood estimation to the histograms. We repeated the maximum-
likelihood estimation with each neural-network-testing trial. The absorbed power’s score equals the fraction of 
the trials in which the maximum-likelihood estimation was correct.

The neural network’s score equals about double the absorbed power’s score, for latent spaces of dimensionality 
2–20. The neural network scores between 0.448 and 0.5009, whereas the absorbed power scores 0.2381. Hence 
the representation-learning model picks up on more of the spin glass’s discriminatory ability than the absorbed 
power does.

In summary, a many-body system’s ability to discriminate amongst combinations of familiar fields can be 
quantified with the score of maximum-likelihood estimates formed from a neural network’s latent space.

Novelty detection: Has the system encountered this drive before? At the start of the introduc-
tion, we described how absorbed power has been used to identify novelty detection. A system detects novelty 
when labeling a stimulus as familiar or unfamiliar. The stimulus produces a response that exceeds a threshold or 
lies below. If the stimulus exceeds the threshold, an observer should guess that the stimulus is novel. Otherwise, 
the observer should guess that the stimulus is familiar.

The observer can err in two ways: One commits a false positive by believing a familiar drive to be novel. One 
commits a false negative by believing a novel drive to be familiar. The errors trade off: Raising the threshold low-
ers the probability p(pos.|neg.) , suppressing false positives at the cost of false negatives. Lowering the threshold 
lowers the probability p(neg.|pos.) , suppressing false negatives at the cost of false positives.

The receiver-operating-characteristic (ROC) curve depicts the tradeoff ’s steepness (see Ref.27 and Fig. 7). Each 
point on the curve corresponds to one threshold value. The false-positive rate p(pos.|neg.) runs along-the x-axis; 
and the true-positive rate, p(pos.|pos.) , along the y-axis. The greater the area under the ROC curve, the more 
sensitively the response reflects accurate novelty detection.

We measure a many-body system’s novelty-detection ability using an ROC curve. Let us illustrate with the 
spin glass. We constructed two random drives, {A,B,C} and {D,E, F} . We trained the spin glass on {A,B,C} . 
In each of 3,000 trials, we then tested the spin glass with A, B, or C. In each of 3000 other trials, we tested with 
D, E, or F. We defined one response in terms of a bottleneck neural network, as detailed below; measured the 
absorbed power; and, from each response, drew an ROC curve (Fig. 7). The curves show that representation 
learning and absorbed power detect the spin glass’s novelty detection about equally well. Each method excels 
slightly in one regime or another.

We defined the representation-learning response as follows. We trained the neural network on the configura-
tions assumed by the spin glass during its training. The neural network populated latent space with three clumps 
of dots. We modeled the clumps with a hard mixture pABC(z1, z2) of three Gaussians. (A mixture is hard if it mod-
els each point as belonging to only one Gaussian.) We then fed the neural network the configuration that resulted 
from testing the spin glass. The neural network mapped the configuration to a latent-space point (ztest1 , ztest2 ) . 
We calculated the probability pABC(ztest1 , ztest2 ) dz1dz2 that the ABC distribution produced the new point. This 
probability was compared to a fixed threshold. If the probability exceeded the threshold, the test configuration 
was guessed to have been produced by a novel drive. We repeated this protocol with the other test trials, using 
the fixed threshold. The fraction of guesses that were true positives, and the fraction of guesses that were false 
positives, specified one point on the blue, solid curve in Fig. 7. Varying the threshold led to the other points.

We defined a thermodynamic ROC curve in terms of absorbed power. Consider the trials in which the spin 
glass is tested with field A. We histogrammed the power absorbed by the spin glass after the A test. We formed 
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another histogram from the B-test trials; and a third histogram, from the C-test trials. To these histograms was 
compared the power P that the spin glass absorbed during a test with an arbitrary field. We inferred the likeli-
hood that P resulted from a familiar field. The results form the orange, dashed curve in Fig. 7.

The two ROC curves enclose regions of approximately the same area: the neural network curve encloses 
an area-0.9633 region; and the thermodynamic curve, an area-0.9601 region. On average across all thresholds, 
therefore, the responses register novelty detection approximately equally. Yet the responses excel in different 
regimes: The neural network achieves greater true-positive rates at low false-positive rates, and the absorbed 
power achieves greater true-positive rates at high false-positive rates. This two-regime behavior persisted across 
batches of trials, though the enclosed areas fluctuated slightly. Hence anyone paranoid about avoiding false 
positives should measure a many-body system’s novelty detection with a neural network. Those more relaxed 
might prefer the absorbed power.

Why should the neural network excel at low false-positive rates? Because of the neural network’s skill at 
generalizing, we expect. Upon training on cat pictures, a neural network generalizes from the instances. Shown 
a new cat, the neural network recognizes its catness. Perturbing the input a little perturbs the neural network’s 
response little. Hence changing the magnetic field a little, which changes the spin-glass configuration little, should 
change latent space little, obscuring the many-body system’s novelty detection. This obscuring disappears when 
the magnetic field changes substantially.

In summary, a many-body system’s novelty-detection ability is quantified with an ROC curve formed from a 
neural network’s latent space or a thermodynamic response, depending on the false-positive threshold.

Feasibility. Applying our toolkit might appear impractical, since microstates must be inputted into the neu-
ral network. Measuring a many-body system’s microstate may daunt experimentalists. Yet the use of microstates 
hinders our proposal little, for three reasons.

First, microstates can be calculated in numerical simulations, which inform experiments. Second, many key 
properties of many-body microstates have been measured experimentally. High-speed imaging has been used to 
monitor soap bubbles’  positions7 and colloidal  suspensions28. Similarly wielded tools, such as high magnification, 
have advanced active-matter29 and gene-expression30 studies.

One might worry that the full microstate cannot be measured accurately or precisely. Soap bubbles’ positions 
can be measured with finite precision, and other microscopic properties might be inaccessible. But, third, some 
bottleneck neural networks denoise their  inputs12,31: The neural networks learn the distribution from which 
samples are generated ideally, not systematic errors. Denoising by variational autoencoders is less established 
but is  progressing32.

Data availability
The machine-learning and spin-glass-simulation code is available at Ref.20. Will be available  at20 once COVID-19 
restrictions loosen enough that we can access the computers that store the files.

Received: 24 November 2020; Accepted: 1 April 2021

Figure 7.  Receiver-operating-characteristic (ROC) curve: The spin glass was trained with three drives, then 
tested with a familiar drive or with a novel drive. From a response of the system’s, an ROC curve can be defined. 
The blue, solid curve is defined in terms of a bottleneck neural network; and the orange, dashed curve is defined 
in terms of absorbed power.
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