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Abstract
Cellular automata are interacting classical bits that display diverse emergent behaviors, from
fractals to random-number generators to Turing-complete computation. We discover that
quantum cellular automata (QCA) can exhibit complexity in the sense of the complexity science
that describes biology, sociology, and economics. QCA exhibit complexity when evolving under
‘Goldilocks rules’ that we define by balancing activity and stasis. Our Goldilocks rules generate
robust dynamical features (entangled breathers), network structure and dynamics consistent with
complexity, and persistent entropy fluctuations. Present-day experimental platforms—Rydberg
arrays, trapped ions, and superconducting qubits—can implement our Goldilocks protocols,
making testable the link between complexity science and quantum computation exposed by our
QCA.

1. Introduction: physical complexity in quantum systems

Classical cellular automata evolve bit strings (sequences of 1s and 0s) via simple rules that generate diverse
emergent behaviors [1–4]. Quantum cellular automata (QCA) evolve quantum bits (qubits), supporting
superpositions and entanglement (figure 1). In computer science, complexity characterizes the number of
steps in an algorithm. The algorithmic-complexity perspective on cellular automata—quantum [5, 6] and
classical [2, 7, 8]—has received much attention. In contrast, physical complexity [9–11] characterizes
emergent behaviors, including materials’ rigidity, spontaneous symmetry breaking [12, 13], and
self-organized criticality [14]. Such emergent behaviors are exhibited by biological, social, and economic
systems [15].

Complexity science is primarily phenomenological and so does not admit of an axiomatic definition
[16]. Instead, a system is regarded as complex if data analysis reveals multiple signals widely associated with
complexity [17, 18]. Examples include natural selection [19], diversity [20] power-law statistics [14],
robustness-fragility tradeoffs [21], and complex networks [17, 18, 22]. Physical complexity has been
observed at the classical and biological scales. Does it arise in the quantum dynamical regime?
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Figure 1. (a) The classical-elementary-cellular-automaton rule C201 flips a classical bit (black = 1, white = 0) if and only if its
nearest neighbors are 0s [4]. This L = 19-site chain is initialized with a 1 centered in 0s. A periodic pattern, called a blinker,
propagates upward in discrete time steps. (b) We extend C201 , for QCA, to rule T1, defined in the main text. The classical bit

becomes a quantum bit in an L = 19-site chain. The average spin
〈
σ̂z

j

〉
has richer discrete-time dynamics, oscillating between

the classical extremes of 0 (black) and 1 (white) and filling the lattice. A truly quantum analog of the classical blinker—an
entangled breather—appears in figures 2(c) and (d). (c) The quantum lattice evolves into a high-entropy entangled state. sj

denotes the site-j von Neumann entropy. (d) An analog quantum computer has implemented rule T1, of which the recently
named PXP model is a particular case. Optical tweezers were used to trap a Rydberg-atom chain [23]. (e) A quantum circuit can
realize digital T1 dynamics. One QCA time step requires two layers of controlled-controlled-Hadamard gates. The first layer
evolves even-index qubits; and the second layer, odd-index. The dashed line represents the boundary qubits, which remain fixed
in |0〉’s.

We answer affirmatively, showing that QCA can exhibit physical complexity when subject to evolutions
that we term Goldilocks rules. A Goldilocks rule changes a qubit’s state when, and only when, half the qubit’s
neighbors occupy the +1 σ̂z eigenstate, |1〉. If too many neighbors occupy |1〉, or too few neighbors, the
central qubit remains static. Goldilocks rules balance evolution with stasis. This tradeoff parallels the
tradeoffs in traditional complex systems [21]. Hence one should expect Goldilocks rules to produce
complexity. They do, we discover—even in some of the simplest QCA constructable: unitary,
one-dimensional (1D) nearest-neighbor circuits.

We quantify QCA’s complexity using quantum generalizations of measures used to quantify the brain’s
complexity in electroencephalogram/functional-magnetic-resonance-imaging [24, 25]: mutual-information
networks. For each pair (j, k) of qubits, we calculate the mutual information Mjk between them. We regard
the qubits as a graph’s nodes and the Mjk as the links’ weights. The nodes and links form a graph, or
network. Upon calculating complex-network measures, we discover behaviors traditionally associated with
complexity. We complement these complex-network measures with complexity measures based on
many-body quantities: persistent entropy fluctuations and emergent phenomena. This constellation of
observations, in the empirical and phenomenological spirit of complexity science, leads to our conclusion
that Goldilocks QCA produce physical complexity.

Furthermore, we show that these Goldilocks rules can be implemented with two classes of quantum
computers: first, analog quantum simulators [26] include Rydberg atoms in optical lattices [23, 27] and
trapped ions [28, 29]. Second, digital quantum computers include superconducting qubits, used to
demonstrate quantum supremacy [30]. Quantum simulators [26, 31, 32] have energized the developing
field of nonequilibrium quantum dynamics [33]. Our work establishes a guiding question for this field:
what are the origins of complexity, that we find complexity in simple, abiological quantum systems?

Our bridging of QCA with complexity science contrasts with all previous work on QCA, to our
knowledge [34]. For example, early QCA studies spotlighted single-particle or semiclassical approximations
[6, 35–37] or weak correlations at the level of density functional theory [5, 38]. Other QCA work concerns
Clifford operators [39–43], which can be efficiently simulated classically [44]. Also single iterations of QCA
evolutions can be classically simulated efficiently [45–50]. In contrast, our paper centers on emergent
many-body phenomena. Additionally, our methodology differs fundamentally from earlier works’: many of
the aforementioned papers are abstract and mathematical. We introduce into QCA the toolkit of complexity
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science, which requires experimentation, empirical observation, and data analysis. While others have noted
QCA-generated entanglement [9, 51–56], no previous work has bridged QCA to complexity science.

In summary of our work’s significance, we bridge the fields of quantum computation and complexity
science via QCA. QCA, we discover, can exhibit physical complexity similar to that observed in biological,
social, and ecological systems. We quantify this complexity and prescribe how to define QCA evolution
rules that generate it. Today’s Rydberg arrays, trapped ions, and superconducting qubits can realize our
QCA; hence our bridge between disciplines is not only theoretical, but also experimentally accessible.

This paper is organized as follows. Section 2 introduces our QCA evolution schemes, including
Goldilocks rules. Section 3 demonstrates our central claim: Goldilocks QCA generate physical complexity
despite their simple unitary structure. Sections 2 and 3 suffice for grasping the novelty of Goldilocks QCA’s
complexity generation. Our QCA’s mathematical details appear in section 4. In section 5, we propose a
physical implementation of our QCA in Rydberg systems, an experimentally realized quantum simulator
[26]. Section 6 concludes with this work’s significance.

2. Overview of QCA

In this section, we first introduce classical elementary cellular automata (ECA) and compare them with our
QCA (section 2.1). Second, we establish the terminology and notation used to label and construct our QCA
(section 2.2). For generality, and to enable simulation by discrete and analog quantum computers, we define
digital and continuous-time QCA. The number of QCA models is vast. Therefore, we pare down the
options to a diverse and illustrative, but manageable, set (section 2.3). We identify the Goldilocks rules,
which we contrast with trivial and near-Goldilocks rules (section 2.4).

2.1. Classical elementary cellular automata
The best-known classical cellular automata are the 1D ECA. An ECA updates each bit of a length-L string in
discrete time steps. Each bit is updated in accordance with a local transition function dependent on the bit’s
neighborhood. The neighborhood is defined as the bit and its two nearest neighbors. The transition
function is encoded in the ECA rule number, CR. The R = 0, 1, . . . , 255. CR specifies the bit’s next state,
given the neighborhood’s current state. Section 4 details the map from R to the local transition function.

During each time step, all bits are updated simultaneously. Such an update requires a copy of the current
bit string: without the copy, one updates the jth bit, based on its neighbors, then must update the neighbors
based on the earlier jth bit’s value. But the earlier value has been overwritten; hence the necessity of the
copy. Though simple to define, ECA dynamics generate emergent features. Examples include fractal
structures, high-quality random number generation [3], and Turing-completeness (the ability to simulate
any classical computer program) [2].

Our QCA partially resemble, and partially contrast with, ECA. Similarities include one-dimensionality,
spatial discreteness, and local updates’ affecting only a neighborhood’s center site. But we trade bits for
qubits, securing new features for, and restrictions on, our QCA. First, time updates can entangle qubits,
generating quantum entropy absent from ECA. Second, our QCA can run in discrete or continuous time.
Hence digital and analog quantum computers can implement our QCA. Third, a QCA rule number
specifies the neighborhood conditions under which an operator evolves a qubit’s state. In contrast, an ECA
rule number specifies a bit’s next state. Fourth, our QCA evolve a qubit under an operator independent of
the qubit’s state. Our nearest-neighbor QCA therefore parallel the 16 locally invertible (unitary) ECA. Fifth,
in digital QCA, not all qubits are updated simultaneously. As explained above, a simultaneous update
requires a copy of the current bit string, in classical ECA. So would a simultaneous update require a copy of
the current joint quantum state, in digital QCA. The no-cloning theorem debars such a copy [5, 51].
Finally, we generalize the local update rule to depend on � 2 neighbors, as the ECA have been generalized
[57].

2.2. Defining quantum cellular automata
Section 4 will detail our QCA mathematically. Here, we provide the key terminology and notation. σ̂α

denotes the α = x, y, z Pauli operator. The σ̂z eigenbasis forms the computational basis: |0〉 denotes the
eigenstate associated with the eigenvalue 1, and |1〉 denotes the eigenstate associated with −1.

Many formal definitions of QCA are possible [5, 6]. However, our definitions conform to the most
general notion of a QCA, as a dynamical quantum system that is causal, unitary, and translation-invariant
[6, 58]. Furthermore, our family of QCA overlaps with the family defined in [51, 59]. The overall structure
of their QCA definition resembles the structure of our definition. Differences include our QCA’s
accommodating five-site neighborhoods and their QCA’s accommodating nonunitary evolutions.
Additionally, our family of analog QCA includes, as a special case, the QCA in [9].
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A QCA updates each qubit of a length-L chain according to a unitary update rule. Qubit j has a set Ωj of
neighbors: the sites, excluding j, within a radius r of j. Ωj corresponds to a Hilbert space on which are

defined density operators that form a vector space spanned by projectors P̂(i)
Ωj

. The i enumerates the

neighbors’ possible configurations, and the projectors form a complete set:
∑

iP̂
(i)
Ωj

= �̂�. The neighborhood

of site j consists of j and its neighbors.
We define digital time evolution as follows. Given an ECA rule number, we convert into a unitary that

acts on a qubit’s neighborhood. The gate evolves different neighborhoods in different circuit layers. This
layered evolution resembles the Trotterization of a many-body Hamiltonian for simulation on a digital
quantum computer.

The unitary on site j’s neighborhood has the form

Ûj :=
∑

i

V̂ ci
j P̂

(i)
Ωj
. (1)

V̂ j := 𝟙⊗j ⊗ V̂ ⊗ 𝟙⊗(L−1−j) denotes a unitary activation operator V̂ that nontrivially evolves site j. The rule
number’s binary expansion determines the ci ∈ {0, 1}. The map between rule and {ci} is tedious, so we
relegate it to section 4.2. The matrix power implies that V̂ci ∈ {�̂�, V̂}. If V̂ = σ̂x and the initial state is a
product of |0〉’s and |1〉’s, the dynamics are classical. We therefore omit this V̂ from this paper.

To define analog time evolution, we convert the rule number into a many-body Hamiltonian
∑

j Ĥj. The
single-neighborhood Hamiltonian is defined as

Ĥj := ĥj

∑
i

ciP̂(i)
Ωj
. (2)

ĥj denotes a Hermitian activation operator that acts on site j. The rule number’s binary expansion
determines the ci ∈ {0, 1}.

To evolve the qubits under an analog QCA rule, we exponentiate the many-body Hamiltonian, forming
Û = exp(−iδtĤ). This Û evolves the system for a time δt. Thus, evolving for one time unit requires 1/δt
applications of Û . Choosing δt � 1, we approximate Û with a product of local unitaries to order δt4 [60].

Analog and digital QCA tend to yield qualitatively similar outcomes. The relationship between analog
and digital QCA is formalized in appendix B.

2.3. Scope
Our digital QCA (1) and analog QCA (2) offer rich seams to explore: many neighborhood sizes,
time-evolution schemes, activation operators, boundary conditions, etc are possible. One paper cannot
report on all the combinations, so we balance breadth with depth. Below, we identify a manageable but
representative subset of options. Appendix C demonstrates that conclusions of ours generalize to other
initial conditions, boundary conditions, and activation operators.

We illustrate digital QCA with r = 1, or nearest-neighbor, rules. This choice facilitates comparisons with
ECA. We denote r = 1 digital QCA by TR. The T evokes three-site neighborhoods; and R = 0, 1, . . . , 15
denotes the rule number. We illustrate TR rules with a Hadamard activation operator,
V̂ = ÛH := (σ̂z + σ̂x)/

√
2, which interchanges the Bloch sphere’s x- and z-axes. We choose the Hadamard

so that the QCA generate entanglement even when the lattice begins in a computational-basis state. During
each time step, even-j sites are updated via the unitary (1), followed by odd-j sites (figure 1(e)). We
showcase these digital rules due to their conceptual simplicity, ease of implementation, and similarities with
ECA.

We illustrate analog QCA with a time resolution of δt = 0.1 and r = 2, i.e. five-site neighborhoods [61].
As 6.55 × 104 such rules exist, we must pare them down. We do so by focusing on totalistic rules, which
update a site conditionally on the total number of neighbors in |1〉. Only 32 totalistic r = 2 rules exist.
Furthermore, totalism endows left-hand and right-hand neighbors with the same influence, enforcing a
physically common inversion symmetry. We denote these rules by FR. The F refers to five-site
neighborhoods; and R = 0, 1, . . . , 31 denotes the totalistic-rule number. We choose the activation ĥj = σ̂x

j ,
for three reasons. First, σ̂x

j serves as the Hamiltonian in many quantum simulations. Second, σ̂x
j transforms

the computational basis, and so our typical initial states, nontrivially. Third, σ̂x
j can generate entanglement

when serving as a Hamiltonian ĥj (as opposed to serving as a unitary V̂ j).
In all simulations reported on in the main text, the boundary conditions are fixed: consider evolving a

boundary site, or any of the boundary’s r neighbors. The evolution is dictated partially by imaginary sites,
lying past the boundary, fixed to |0〉’s. Again, we exhibit other boundary conditions in appendix C,
supporting the generality of the main text’s conclusions.
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Throughout the main text, TR simulations are initialized with the product state |. . . 000 1 000 . . .〉. This
choice promotes simplicity; concreteness; and ease of comparison with ECA, which are often initialized
similarly. FR simulations are initialized in |. . . 000 101 000 . . .〉: one neighborhood must contain at least two
|1〉’s for the Goldilocks FR rule to evolve the state nontrivially, as we will see below. Furthermore, the
Goldilocks FR rule evolves this state into an entangled breather. This breather, first shown in section 3.1 and
further analyzed in section 3.4, parallels the breather of discrete nonlinear wave theory [62, 63].

2.4. Entŕee into Goldilocks and non-Goldilocks rules
To gain intuition about Goldilocks rules, consider the extreme digital rules T0 and T15. T0 always applies the
identity operator to the target site. T15 applies the activation operator to all sites at every time step. Both
dynamics are trivial and generate no entanglement. As Goldilocks would say, T0 is too passive, and T15 is
too active.

Interpolating between the extremes yields rules that increasingly approach what Goldilocks would deem
‘just right’. Consider extending the do-nothing rule T0 to updating sites whose two neighbors are in |0〉.
The resulting rule, T1, leads to nontrivial dynamics. Similarly, consider constraining the update-everything
rule T15: each site is updated unless both its neighbors are in |0〉’s. Nontrivial dynamics emerge from the
resulting rule, T14.

Optimizing the tradeoff between passivity and activity leads to the Goldilocks rule T6. Similar tradeoffs
have been observed to generate and maintain complexity [21]. Section 3 shows that tradeoffs generate
complexity also in quantum dynamics and computation.

Let us examine the form of T6. Let P̂(m) = |m〉〈m| denote a projector onto the |m〉 eigenspace of σ̂z, for
m = 0, 1. The T6 local update unitary, acting with a general activation operator, is

Û = P̂(1) ⊗ �̂�⊗ P̂(1) + P̂(1) ⊗ V̂ ⊗ P̂(0) + P̂(0) ⊗ V̂ ⊗ P̂(1) + P̂(0) ⊗ �̂�⊗ P̂(0). (3)

The activation operator acts if exactly one neighbor is in |1〉—not 0 (too few) neighbors or 2 (too many)
neighbors.

Having introduced the digital three-site Goldilocks rule, we define the analog five-site Goldilocks rule,
F4. F4 updates a site if exactly 2 of the site’s 4 neighbors are in |1〉. Let us construct the single-neighborhood
Hamiltonian, Ĥj, for a Hermitian activation ĥj. We sum over the ways of distributing two P̂(1)’s across four
neighbors:

Ĥj = ĥj

∑
α,β,γ,δ∈{0,1},
α+β+γ+δ=2

P̂(α)
j−2 P̂(β)

j−1 P̂(γ)
j+1 P̂(δ)

j+2. (4)

Having introduced the Goldilocks rules, we identify a near-Goldilocks rule that has been realized
experimentally but whose status as a QCA has not been widely recognized. The PXP model is a
Hamiltonian that has been implemented with Rydberg-excited neutral atoms [23] (figure 1(d)). Such
models generate diverse quantum dynamical features, such as many-body scars [64]. Studies of PXP have
spotlighted approaches conventional in many-body physics, such as energy-level statistics. Any physical
complexity generated by the model, and the model’s standing within the broader class of QCA, have not
been explored. We quantify the complexity and identify the model as a QCA, although PXP is not a focus of
this paper: as shown below, PXP (more precisely, a digital version of PXP) is a particular case of the
near-Goldilocks rule T1. The model therefore generates less complexity than Goldilocks rules, our main
focus. Additionally, rule T14 has been explored theoretically under the name ‘rule 54’ [65, 66]. We
contextualize T14 and T1, demonstrating that they are near-Goldilocks rules that belong to a broader family
of QCA, which contains QCA that produce greater complexity.

To demonstrate the power of this cellular-automaton-and-complexity-driven approach, we arrive at the
PXP model not via conventional many-body considerations, but via ECA; and we observe rich many-body
physics accessible to QCA beyond PXP: figure 1(a) features the ECA rule C201, known to produce a simple
periodic pattern called a blinker. The name derives from the oscillations of black and white squares that
represent 1 and 0 bits. The closest digital QCA rule is T1, of which the digital PXP model is a particular
case, which generates figures 1(b) and (c). A quantum analog of a bit’s being 1 or 0 is 〈σ̂z〉. T1 produces not
only visually richer dynamics than the ECA, but also quantum entropy. Progressing beyond PXP to other
QCA reveals a truly nonclassical analog of a blinker, shown in the next section.

3. Main results: Goldilocks QCA generate complexity

The prevalence of tradeoffs in complexity, with Goldilocks rules’ regulation of a tradeoff, suggests that
Goldilocks rules may generate complexity. This section supports this expectation with numerical evidence.
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Figure 2. QCA produce diverse dynamical behaviors, visualized here with familiar one-point observables. For (a) and (b) and
(e) and (h), the digital TR rules, an L = 19-site chain was initialized to |. . . 000 1 000 . . .〉, then evolved in discrete time under
various TR rules. The Goldilocks rule T6 generates the spin dynamics shown in (a) and the entropy dynamics shown in (b). The
dynamics exhibit patterns that resist equilibration for long times, as shown in each panel’s upper block. For (c) and (d) and (i)
and (j), we extend QCA to five-site rules, initialize the L = 19-site chain to |. . . 000 101 000 . . .〉, and evolve in continuous time.
(c) and (d) The Goldilocks rule F4 generates a nonclassical variation on the blinker in figure 1(a), an entangled breather. (i) and
(j) In contrast, far-from-Goldilocks rule F26 promotes rapid equilibration to a high-entropy state.

As many readers may be unfamiliar with complexity science, section 3.1 initiates our numerical study of
Goldilocks rules with measures familiar from many-body physics: one-point correlation functions and von
Neumann entropies. These metrics equilibrate under non-Goldilocks evolution but not under Goldilocks
evolution. Building on this observation of Goldilocks rules’ noteworthy dynamics, we calculate four
complex-network measures [67–70] in section 3.2. We evaluate these measures on networks formed from
the mutual information between qubit pairs, in states generated by QCA. We complement these two-point
functions with many-body entropy fluctuations in section 3.3. Additionally, the Goldilocks rule F4 exhibits
an emergent feature, the nonclassical analog of the ECA blinker. We study the structure and robustness of
the entangled breather in section 3.4. As explained in the introduction, complexity science is
phenomenological. A system is regarded as complex if it exhibits several features suggestive of complexity
[17]. Together, the network measures, entropy fluctuations, and entangled breather form six signatures of
complexity. We therefore conclude that Goldilocks QCA generate complexity.

3.1. One-point measures
As complexity science may be unfamiliar to many readers, our numerical study of Goldilocks rules begins

with measures familiar from many-body physics. Figure 2 shows
〈
σ̂z

j

〉
(top row) and the single-site von

Neumann entropy sj (bottom row) as functions of time. The entropy of a subsystem A in a reduced state ρA
is defined as sA := − Tr(ρA log ρA). Further definitions and calculations appear in appendices A1 and A2.
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Under the QCA evolutions illustrated in the right-hand panels,
〈
σ̂z

j

〉
and sj equilibrate: after a time of

the order of or much longer than the propagation time across the system, the plots become fairly uniform
across space and show only small fluctuations. The Goldilocks rules, T6 and F4, defy equilibration most
dramatically (figures 2(a)–(d)). Their measures display persist patterns. For instance, F4 generates an
entangled breather analyzed in section 3.4.

The near-Goldilocks rule T1 (figures 2(e) and (f)) resists equilibration second-best: although its patterns
fade, they persist across time. The fading is stronger under the near-Goldilocks rule T14 (figures 2(g) and

(h)). Rule F26 (figures 2(i) and (j)) encourages equilibration the most:
〈
σ̂z

j

〉
quickly equilibrates to zero

(rose color), and sj quickly equilibrates to yellow (a high entropy value) across the lattice. F26 is a
far-from-Goldilocks rule: it evolves site j if the site has one, three, or four neighbors in |1〉.

We illustrate far-from-Goldilocks rules with F26, Goldilocks rules with T6 and F4, and near-Goldilocks
rules with T1 and T14 throughout the main text. Appendix C widens the survey to rule T13, a
far-from-Goldilocks, nontotalistic digital rule.

One might wonder whether integrability or finite-size effects prevent the Goldilocks rules from
equilibrating the measures in figure 2. Finite-size effects cannot take responsibility because the
non-Goldilocks rules promote equilibration at the same system sizes used for the Goldilocks rules.
Furthermore, appendix C demonstrates our results’ robustness with respect to changes in boundary
conditions. Whether Goldilocks rules are integrable is discussed in section 6 but is irrelevant to the present
paper, which focuses on complexity. The important point is that Goldilocks rules differ from other QCA
even according to many-body measures. We now show that complexity further distinguishes Goldilocks
rules.

3.2. Complexity measures evaluated on mutual-information networks
We quantify QCA’s complexity using complex networks. A network, or graph, is a collection of nodes, or
vertices, connected by links, or edges. A complex network is neither regular nor random. Completely
connected graphs (in which all nodes link to all others) are not complex; their links are regular and orderly.
For the same reason, lattice graphs are not complex networks. Erdös–Rényi graphs are not complex for the
opposite reason: their links are created randomly.

Complex networks lie between the random and regular extremes. Concrete examples include social,
airport-connection, neurological, and metabolic networks. Abstract examples include small-world
networks, which exhibit clustering (nodes collect into tight-knit groups) and a short average path length
(one node can be reached from another via few links, on average).

We study networks that emerge from quantum many-body systems. Networks can alternatively be
imposed on quantum systems, such as networked NISQ (noisy intermediate-scale quantum) computers and
a quantum Internet [71, 72]. Yet complex networks can also emerge naturally in quantum states generated
by noncomplex systems or models. This emergence has been demonstrated with the Ising and
Bose–Hubbard models near quantum critical points [67, 73]. We progress beyond critical phenomena to
dynamical quantum systems and quantum computation.

Networks have been formed from the mutual information, as in brain activity that exhibits a
small-world structure [24, 25]. The mutual information quantifies the correlation between two members of
a system. We use the quantum mutual information [74, 75] between qubits j and k 	= j,

Mjk :=
1

2
(sj + sk − sjk). (5)

The 1/2, though nonstandard, conveniently normalizes the quantity as Mjk � 1. The mutual information
depends on two-site von Neumann entropies that can be measured experimentally with quantum
overlapping tomography [76]. Mjk upper-bounds every same-time, two-point correlator between j and k
[77]. Appendix A2 contains further details. We denote by M the matrix of elements Mjk.

Figure 3(a) displays mutual-information networks formed by QCA after 500 time units. Open circles
represent the qubits, which serve as nodes. The greater the correlation Mjk, the closer together nodes j and k
lie, and the thicker the line between them. The Goldilocks rules T6 and F4 produce visibly clustered
networks. The non-Goldilocks rules’ networks more closely resemble the network encoded in the random
state |R〉. |R〉 is an L-qubit state of 2L complex amplitudes. The amplitudes’ real parts are drawn from
independent, identical Gaussian distributions, as are the imaginary parts. The near-Goldilocks rules T1 and
T14 generate networks that interpolate between the Goldilocks and random networks. The
far-from-Goldilocks rule F26 produces a network strikingly similar to |R〉’s in shape and connectivity.
Progressing beyond these qualitative features, we now quantify the networks’ complexity with four metrics:
clustering, average path length, disparity fluctuations, and the probability density over node strengths.
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Figure 3. Mutual information networks distinguish Goldilocks rules as generating the most complexity. (a) An L = 19-site spin
chain was initialized, then evolved for 500 time units. In each of three cases, the initialization was to |00 . . . 0 1 00 . . . 0〉, and a TR

QCA dictated the evolution. In two other cases, the initialization was to |00 . . . 0 101 00 . . . 0〉 and an FR QCA dictated the
evolution. The open circles represent the qubits. Nodes j and k are connected by a line whose thickness is proportional to the
mutual information Mjk. The nodes’ layout is found by modeling links as springs; well-connected nodes lie close together. The
initial conditions are chosen to match those of figure 2. The networks’ labels provide a legend for the panels below. The black
lines and dots show the results of initializing the qubits to a random state |R〉, evolving the state under one of the five QCA, then
averaging the final state over the QCA. (b) Clustering coefficient C vs time t. (c) Disparity fluctuations ΔY vs t. (d) and (e)
Clustering coefficient C and disparity fluctuations ΔY, averaged over late times t ∈ [5, 000, 10, 000] (denoted by the overline), vs
system size L. (f) Probability density over node strengths gj collected at t ∈ [5, 000, 10, 000]. Statistics were accumulated with
logarithmically spaced bins. Only bins with > 75 counts were maintained. The inset shows the same data on a linear horizontal
scale and identical vertical scale.

3.2.1. Clustering and average path length
The clustering coefficient C quantifies transitivity, easily intuited in the context of social networks: if Alice is
friends with Bob and friends with Charlie, how likely is Bob to be friends with Charlie? The clustering
coefficient is proportional to the number of connected triangles in the network, divided by the number of
possible connected triangles:

C :=
Tr

(
M3

)
∑L−1

j,k=0
j	=k

[
M2

]
jk

∈ [0, 1]. (6)

We will measure the clustering as a function of time (figure 3(b)) and system size (figure 3(d)).
Figure 3(b) shows the clustering coefficient averaged over the network, C, as a function of time.

Complex networks exhibit large clusterings, as discussed above. The Goldilocks rules (ruby and amber
curves) maintain the highest clusterings. The nearest clustering characterizes the near-Goldilocks rule T1

(turquoise curve). The T6 clustering (ruby curve) exceeds the T1 clustering by a factor of 10.5, and the F4

clustering (amber curve) does by a factor of 2.2. The lowest clustering appears in the random network
(black curve), generated as follows: the lattice is initialized in a random state |R〉, then evolved under one of
the five QCA. The clustering is measured, then averaged over the five QCA.

The qualitative trends remain robust as the system size, L, grows: figure 3(d) shows the clustering,
averaged over the network and over late times t ∈ [5, 000, 10, 000] as a function of L. Only under the
Goldilocks rules T6 and F4 (ruby and amber dots) does C grow with L. Under the other QCA, C decays
exponentially, then plateaus. These behaviors approximate the behavior in the random state, wherein C
strictly decays. Hence only the Goldilocks rules’ complexity, as quantified with clustering, remains robust
with respect to system-size growth.

As mentioned above, clustering combines with short average paths in small-worlds networks, which are
complex. All our QCA simulations generated networks with short average path lengths ∼ 1.5 [78]. Since
Goldilocks rules generate high clustering and short average paths, Goldilocks rules generate small-world
networks and so complexity.
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3.2.2. Disparity fluctuations
Having measured the clustering and average path length, we turn to disparity. The disparity quantifies how
heterogeneous a network is, or how much the network resembles a backbone [79]:

Y :=
1

L

L−1∑
j=0

∑L−1
k=0

(
Mjk

)2

(∑L−1
k=0 Mjk

)2 ∈ [0, 1). (7)

Technically, Y is the disparity averaged over the network; the disparity is conventionally defined on one site.
However, we call Y ‘the disparity’ for conciseness.

Two examples illuminate this definition. First, consider a uniform network: Mjk = a is constant for all
j 	= k. Along the diagonal, Mjj = 0. The uniform network lacks a backbone and so has a small disparity: if
L > 1 denotes the number of nodes, Y = 1/(L − 1) → 0 as L →∞. In contrast, a 1D chain has an
adjacency matrix Mjk = a(δj(k+1) + δj(k−1)). The chain consists entirely of a backbone, so the disparity is
order-one for all system sizes L: Y = (L + 2)/(2L). Disparity has been applied in complex-network theory,
e.g. to classify chemical reactions in bacterial metabolism [80].

Figure 3(c) shows fluctuations ΔY in QCA disparity as a function of time. We define ΔY as the
standard deviation of Y in a rolling time window of L time units. ΔY reflects changes in a network’s
uniformity. The Goldilocks rule T6 (ruby line) always produces disparity fluctuations above the pack’s. The
Goldilocks rule F4 (amber line) always remains at the top of the pack, though the near-Goldilocks rules (T1

and T14, represented with turquoise and yellow lines) do, too. The far-from-Goldilocks rule F26 (green line),
like the random state |R〉 (black line), produce 1 and 2 orders of magnitude fewer disparity fluctuations.
The |R〉 data are generated analogously to in the clustering analysis.

Similar trends surface in figure 3(e), which shows disparity fluctuations averaged over space and over
late times, ΔY , as a function of system size. The ΔY produced by the Goldilocks rules (ruby and amber
dots) exceed the ΔY produced by the other QCA, at all system sizes. Again, the near-Goldilocks rules
(turquoise and yellow) mimic the Goldilocks rules most, and the far-from-Goldilocks rule (green) mimics
the random state most (black). High disparity fluctuations imply a lack of equilibration in network
structure: the network sometimes exhibits heterogeneity and sometimes exhibits uniformity. Such diversity
signals the complexity of, e.g. Internet traffic [81]. Here, the diversity signals the complexity of Goldilocks
and, to some extent, near-Goldilocks rules.

3.2.3. Probability density over node strengths
Our fourth complex-network measure is the probability density over node strengths. The node strength,
gj :=ΣkMjk � 0, measures how strongly node j is connected to the rest of the network. We draw this
measure from analyses of social and airport-connection networks, real-world complex networks [82, 83].
These networks contain hubs: few nodes carry a significant fraction of the network’s total node strength.
Hubs make the node-strength distribution broad, e.g. power-law tails.

Figure 3(f) displays the node-strength densities of the networks generated by the QCA. The probability
densities were calculated at late times t ∈ [5, 000, 10, 000]. The Goldilocks rules (T6 and F4, shown in ruby
and amber) produce distributions that are significantly broader than the others: the T6 points form a
lopsided peak with a fat tail. The F4 points form two peaks that ensure the distribution’s width. Hence
Goldilocks rules cause a few nodes to be strongly connected, as in known complex networks. The other
rules, and the random state, lead to narrowly peaked distributions: most connection strengths are centered
on the mean.

We have investigated four complexity measures on mutual-information networks generated by QCA:
clustering, average path length, disparity fluctuations, and the probability density over node strengths. The
Goldilocks rules tend to exhibit the most complexity; the near-Goldilocks rules, the second-most; the
far-from-Goldilocks rule, less; and the random state, the least.

3.3. Bond entropy and its fluctuations
The previous section presented complexity measures evaluated on a network formed from the mutual
information Mjk. Mjk depends on just two sites. We expand our study to larger subsystems, finding further
evidence that Goldilocks rules generate complexity. Large subsystems have von Neumann entropies that
have not been measured experimentally. However, the second-order Rényi entropy is accessible [84]. This
section therefore focuses on the second-order Rényi entropy.

The entropy is defined as follows. Consider partitioning the lattice at its center. The lattice’s halves have
equal entropies, associated with the bond between them and the bond entropy, sbond [85]. If one lattice half
occupies the quantum state ρ̂, sbond := − log2

(
Tr(ρ̂2)

)
. To bridge this measure to complexity science, we
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Figure 4. Entropy, and fluctuations in the entropy, of the qubit chain’s central bond. Large entropy fluctuations are
characteristic of macro-scale complex systems. Goldilocks rules display the largest such entropy fluctuations of all the rules
considered here. The black lines and dots, labeled |R〉, were generated as described in the caption of figure 3. The digital TR QCA
and analog FR QCA were initialized as described there. (a) The central cut’s second-order Rényi bond entropy, sbond, as a function
of time for systems of size L = 19. (b) The bond entropy averaged over late times t ∈ [5, 000, 10, 000], sbond, as a function of
system size. (c) Entropy fluctuations Δsbond, computed as a rolling standard deviation with a window size of L = 19 time units.
(d) Time-averaged fluctuations in the entropy, Δsbond, as a function of system size.

consider fluctuations in sbond. Entropy fluctuations quantify complexity in biological systems [86]. In
quantum statistical mechanics [87], entropy fluctuations diverge at certain transitions between ordered and
disordered phases [88]. Complexity sits at the boundary between order and disorder, as explained in
section 3.2. For these reasons, we interpret high entropy fluctuations generated by QCA as signaling
physical complexity.

Figure 4(a) shows sbond as a function of time. The curves generated by the Goldilocks rules T6 and F4

(the ruby and amber curves) fluctuate the most and persistently. Figure 4(b) shows the fluctuations Δsbond

plotted against time, for a 19-site system. The fluctuations produced by the Goldilocks rules remain at least
an order of magnitude above the fluctuations produced by the non-Goldilocks rules. Entropy fluctuations
therefore signal Goldilocks’ rules complexity.

This behavior remains robust as the system grows. Let Δsbond denote the entropy fluctuations averaged
over late times. Figure 4(d) shows Δsbond plotted against the system size. As L grows, the entropy
fluctuations shrink most quickly for the random state (black dots) and the far-from-Goldilocks rule F26

(green dots), less quickly for the near-Goldilocks rules (yellow and blue dots), and most slowly for the
Goldilocks rules (ruby and amber dots). Hence Goldilocks rules generate complexity robustly, according to
entropy fluctuations.

As an aside, although the Goldilocks rules produce entanglement, according to figures 4(a) and (c), they
produce the least. This behavior might remind one of many-body scars—nonequilibrating features
discovered under continuous-time T1 evolution. Many-body scars mark a few area-law energy eigenstates
states amidst a volume-law sea. Yet observing many-body scars requires special initial conditions.
Fine-tuning is not necessary for Goldilocks rules to hinder the entropy’s equilibration: complexity emerges
for diverse initializations, activation operators, and boundary conditions, as shown in appendix C.

3.4. Entangled breather
The sixth signal of Goldilocks rules’ complexity is a robust emergent phenomenon. The emergent
phenomena of life and consciousness signal complexity most famously. Other examples appear in economic
markets [89], Internet traffic [90], physiological airways [91], and neural activity [92]. Figures 2(c) and (d)
display the entangled breather produced when the Goldilocks rule F4 evolves the initial state
|00 . . . 0 101 00 . . . 0〉. Here, we analyze the breather’s dynamics and robustness.

Breathers fall under the purview of discrete nonlinear wave theory. There, a breather is defined as a
solution that oscillates in time and that is localized spatially [62, 63]. Let us establish that the phenomenon
we observe satisfy these criteria. Imagine measuring the σ̂z of each site j. The probability of obtaining the

+1 outcome is
〈

P̂(1)
j

〉
, wherein P̂(1)

j := |1〉j〈1|j. Figure 5(a) shows
〈

P̂(1)
j

〉
plotted against time for key sites j.

10



Quantum Sci. Technol. 6 (2021) 045017 L E Hillberry et al

Figure 5. The entangled breather produced by Goldilocks rule F4 has a characteristic structure and is robust to perturbations.
Here we analyze the breather on an L = 19-site lattice and denote the center site by L/2. (a) The probability of site j being in |1〉,〈

P̂(1)
j

〉
, shows temporal oscillations occur with the greatest amplitude near the lattice’s center. (b) Late-time average of

fluctuations in the probability of sites being in |1〉, Δ
〈

P̂(1)
j

〉
, quantifies the spatial localization of temporal oscillations. The

coloring is as in panel (a). (c) Upon perturbation by the F26 Hamiltonian, scaled by ε, the characteristic fluctuations near the
lattice’s center decay exponentially. The black lines show exponential fits that yield a lifetime τ . The decaying curves are shifted
by 0.05 from one another to aid visualization. The dashed horizontal lines mark the shifted x-axes. (d) The entangled breather
lifetime decays as a function of the Hamiltonian-perturbation strength according to a power law. The coloring is as in panel (c).

The central site is at j = L/2�, whose notation we simplify to L/2. The central site (j = L/2, purple curve)

and its two nearest neighbors (j = L/2 ± 1, amber curve) exhibit
〈

P̂(1)
j

〉
’s that oscillate throughout the

evolution. We have confirmed the first defining property of breathers.
To confirm the second property, we compare the oscillations near the lattice’s center to the oscillations

at the edges (j = 0, L − 1, red curve). The central oscillations have much greater amplitudes. We quantify

this comparison with the fluctuations Δ
〈

P̂(1)
j

〉
, the temporal-standard deviation across a sliding window of

L time units. Averaging the fluctuations over late times produces Δ
〈

P̂(1)
j

〉
, plotted against j in figure 5(b).

The fluctuations peak strongly near the lattice’s center. Hence the emergent phenomenon is strongly
localized and so is a breather.

Two sets of evidence imply the breather’s entanglement. One consists of the entanglement measure in
section 3.3. (Section 3.2 displays results consistent with entanglement, although the mutual information
captures classical correlations in addition to entanglement.) Second, the Schmidt-truncation study
described later in this section implies the breather’s entanglement.

This emergent phenomenon could be delicate; its lifetime could be exponentially suppressed by errors
in, e.g. an experiment. The complexity generated by the Goldilocks rule F4 would be tenuous. We
demonstrate, however, that the entangled breather is robust with respect to perturbations of three types:
perturbations of the Hamiltonian, of the entanglement, and of the initialization. Left unperturbed, the
entangled breather oscillates for as long as our numerics run. To quantify the breather’s robustness, we
perturb the breather and measure the center site’s neighbors (j = L/2 ± 1). We fit the fluctuations

Δ
〈

P̂(1)
L/2±1

〉
with the exponential A + B e−t/τ to extract breather’s lifetime, τ .

The first perturbation is of the Hamiltonian. We scale the far-from-Goldilocks F26 Hamiltonian with a
positive ε � 1 and add the product to the F4 Hamiltonian. The perturbed dynamics produce an entangled

breather whose oscillations decay. Figure 5(c) shows the fluctuations Δ
〈

P̂(1)
L/2±1

〉
and their fits for various ε.

The lifetime τ decays with ε as the power law τ ∼ ε−1.6, as shown in figure 5(d). The power law decays
more slowly than an exponential, indicating the entangled breather’s robustness with respect to
Hamiltonian perturbations.

Second, we perturb the QCA via Schmidt truncation: we evolve the system with a matrix-product-state
approximation. We reduce the number of singular values used to represent the state, χ, from 2L/2� = 29

until the breather becomes unstable. This truncation time-adaptively caps the amount of entanglement in
the state [93]. Under Schmidt truncation, the lifetime τ changes sharply at χ ∼ 11. Below the threshold,
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Figure 6. (a)–(c) Example classical-ECA evolutions of a 1 centered in 0s. (d) Rule tables for C30, which generates pseudorandom
numbers [3]; C90, which generates a fractal structure; and C110, which is Turing-complete (capable of simulating any computer
program) [2].

τ ∝ e0.6χ. At the threshold, τ ∼ 340. Above, τ exceeds the simulation time of 6000 times units. Hence we
regard the entangled breather as robust with respect to Schmidt truncation for χ > 11.

Third, we initialized the lattice imperfectly: the |1〉’s were replaced with copies of eiφ δ |0〉+
√

1 − δ2 |1〉,
wherein φ ∈ [0, 2π) and 0 < δ � 1. Whenever δ � 1/2, the breather’s lifetime exceeds the simulation time,
regardless of φ. When δ > 1/2, the breather’s oscillations still persist indefinitely, but with a smaller
amplitude. The entangled breather is therefore robust also with respect to a wide range of perturbations to
the initialization. This emergent phenomenon, with the bond-entropy fluctuations and the four
mutual-information measures, points to the Goldilocks rules’ generation of complexity.

4. Model details

In this section, we present formulae for the TR unitaries and the FR Hamiltonians, as functions of rule
number. Our rule numbering is inspired by elementary-cellular-automata (ECA) rule numbering, which we
review first.

4.1. Classical-rule numbering
A classical-ECA neighborhood consists of a central bit and its two nearest neighbors. Classical ECA rules are
denoted by CR. The rule number R encodes the local transition function, which prescribes a bit’s next state
for every possible neighborhood configuration. A bit has two possible values (0 or 1), and ECA
neighborhoods consist of three sites. Hence a neighborhood occupies one of 23 = 8 configurations. Each
configuration can lead to the central bit’s being set to 0 or 1; so 223

= 256CR rules exist.
The system is evolved through one time step as follows. First, a copy of the bit string is produced. Each

site’s neighborhood is read off the copy and inputted into the local transition function. The function’s
output dictates the central site’s next state, which is written to the original bit string. The copying allows all
sites to be updated independently, simultaneously.

The label CR encodes the rule as follows. Given CR, expand R into 8 binary digits, including leading
zeroes: R =

∑7
n=0 cn2n. The index n is a base-10 number that can be translated into binary:

n =
∑2

m=0km2k = k2k1k0. These three bits represent a possible initial configuration of the neighborhood. If
the neighborhood begins in the nth possible configuration, the central site is updated to the cn ∈ {0, 1} in
the binary expansion of R. Figure 6 shows the update table for rules R = 30, 60, and 110. Also depicted are
the time evolutions of a 1 centered in 0s.

4.2. Digital quantum cellular automata
TR denotes a digital three-site-neighborhood QCA rule. To expose the rule’s dynamics, convert R from
base-10 into four base-2 bits (including leading zeroes):
R = c1123 + c1022 + c0121 + c0020 =

∑1
m,n=0 cmn22m+n. The m specifies the state of a central site’s left-hand

neighbor, and n specifies the right-hand neighbor’s state. cmn ∈ {0, 1} specifies whether the central bit
evolves under a single-qubit unitary V̂ (when cmn = 1) or under the identity �̂� (when cmn = 0), given the
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neighbors’ states. The three-site update unitary has the form

Ûj(V̂) =
1∑

m,n=0

P̂(m)
j−1 V̂ cmn

j P̂(n)
j+1. (8)

The superscript on V̂ j denotes a matrix power. We update the lattice by applying Ûj(V) to each three-site
neighborhood centered on site j, for every j. Even-j neighborhoods update first; and odd-j neighborhoods,
second. One even-site update and one odd-site update, together, form a time step.

4.3. Analog quantum cellular automata
FR denotes a totalistic analog QCA rule that updates each site j, conditionally on four neighbors, with a
Hermitian activation operator ĥj. The value of R dictates the form of the many-body Hamiltonian
Ĥ =

∑
j Ĥj. We expand R into 5 binary digits: R =

∑4
q=0 cq2q. Site j evolves conditionally on its neighbors

through

Ĥj = σ̂x
j

4∑
q=0

cqN̂ (q)
j . (9)

N̂ (q)
j denotes the projector onto the q-totalistic subspace, in which exactly q neighbors are in |1〉’s:

N̂ (q)
j =

∑
α,β,γ,δ∈{0,1},
α+β+γ+δ=q

P̂(α)
j−2P̂(β)

j−1P̂(γ)
j+1P̂(δ)

j+2. (10)

The sum runs over
(

4
q

)
permutations of the neighboring |0〉’s and |1〉’s. We report on ĥj = σ̂x

j for reasons

explained in section 2.3.

5. Physical implementation of quantum cellular automata

Having established the QCA’s rule numbering, we prescribe a scheme for implementing QCA physically. We
focus on analog QCA because they naturally suit our target platform, an analog quantum simulator. In this
section, TR refers to an analog three-site QCA. Appendix B details the relation between analog and digital
TR protocols.

We begin with general results, before narrowing to an example platform. First, we show that the
longitudinal-transverse quantum Ising model can reproduce QCA dynamics. Many experimental platforms
can simulate this Ising model and so can, in principle, simulate QCA. Examples include superconducting
qubits, trapped ions, and Rydberg atoms.

We illustrate our experimental scheme with neutral atoms trapped in an optical-tweezer lattice and
excited to Rydberg states with principle quantum numbers � 1. Excited atoms interact through a van der
Waals coupling that induces a Rydberg blockade: two close-together atoms cannot be excited
simultaneously. We exploit this blockade to condition a site’s evolution on the site’s neighbors. Moreover,
Rydberg atoms can be arranged in various geometries subject to short- and long-range interactions [94].
We exploit these freedoms to engineer nearest-neighbor rules with a linear atom chain and
next-nearest-neighbor rules with a ladder-like lattice (figure 7(k)).

Related work appeared in the literature recently: a Rydberg-chain realization of QCA was proposed in
[59, 95]. Wintermantel et al focus on three-site neighborhoods. We present a more-general version of
unitary Rydberg-atom QCA, which encompasses three-site and five-site neighborhoods.

This section is organized as follows. In section 5.1, we map analog QCA onto the Ising Hamiltonian.
Section 5.2 shows how to implement this Hamiltonian with Rydberg atoms. We simulated these
Rydberg-atom QCA numerically, obtaining results presented in sections 5.3 and 5.4.

5.1. From QCA to the Ising model
Analog QCA involve the Hermitian activation operator ĥj, which we have chosen to be σ̂x

j in this paper.

According to equation (2), ĥj evolves site j if the neighboring sites satisfy the conditions imposed by the
projectors. Such a state change can be modeled with the Ising Hamiltonian: the projectors are implemented
with local energy penalties that shift undesired transitions far off-resonance, in analogy with
implementations of the PXP model [96].
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Figure 7. (a)–(i) Comparison of QCA evolution and Rydberg-atom dynamics. We study
〈
σ̂z

j

〉
for the near-Goldilocks three-site

rule T1 in (a)–(c), the three-site Goldilocks rule T6 in (d)–(f) and the five-site Goldilocks rule F4 in (g)–(i). Panels (c), (f) and
(i) show the results for key sites j, distinguished by line style. Colored lines reflect the exact QCA results; black lines represent
their Rydberg-atom simulations. (j) and (k) Lattice geometries for the three-site TR rules (j) and five-site FR rules (k). Blue circles
represent the atoms; red lines, the interactions with strength Va; and gray, dashed lines, the next-nearest-neighbor interactions
(under TR rules) and next-next-nearest neighbor interactions (under FR rules), which generate higher-order effects. A local
detuning is applied at the boundaries to simulate the QCA boundary conditions. Parameters: L = 17. In the Rydberg
simulations, Ω = 2 MHz, and Va = 35 MHz. Time is expressed in units of 2π μs.

Let hx and hz denote the transverse and the longitudinal fields, respectively. The Ising Hamiltonian has
the form

Ĥ = hx

∑
j

σ̂x
j + hz

∑
j

σ̂z
j +

J

2

∑
j

∑
k∈Ωj

σ̂z
j σ̂

z
k. (11)

The interaction strength J is uniform across the neighbors k ∈ Ωj and vanishes outside. If hx = 0, the
resulting Hamiltonian, Ĥ0, can be represented by a block-diagonal matrix relative to the σ̂z product basis.
Each block corresponds to one total-energy value.

Consider switching on hx � J ≈ hz. The Hamiltonian transforms according to a first-order
Schrieffer–Wolff transformation: the resulting effective Hamiltonian preserves the original block diagonal
form individuated by the eigenvalues of Ĥ0 but includes all the possible transitions within each block. The
transitions between Ĥ0-degenerate eigenstates are resonant in energy, while the others require energy jumps
∼ J and are exponentially suppressed [97]. By fixing J and tuning hz we can set the blocks of Ĥ0. Then,
transitions between different sets of states become energetically favored or penalized.

In our Ising model implementation, a QCA rule is translated into the choice of Ĥ0. Now, we show how
to choose values of hz and J to simulate a QCA rule. In general, spin j evolves under the influence of
neighboring spins as an interacting quantum system. For the sake of showing how Ĥ0 is divided into blocks
by fixing hz and J, we consider spin j as evolving in a classical field. hx serves as the jth qubit’s intrinsic gap.
hz + Jmj serves as the effective external field’s frequency. The effective external field creates an energy

penalty dependent on the magnetization, mj =
〈∑

k∈Ωj
σ̂z

k

〉
. The magnetization counts the |0〉’s in Ωj and

subtracts off the number of |1〉’s.
Under each of several TR and FR rules, the activation operates only if a certain number of neighbors

occupy |1〉’s or, equivalently, if the magnetization m takes one particular value. Possible examples include
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T1, T6, T8, and FR for R a power of two: R = 2n, n ∈ {0, 1, 2, 3, 4}. Two states that only differ by a flip of
spin j are resonant in energy, and therefore belong to the same block, if and only if the effective external
field vanishes, or hz = −mjJ. Thus, if hz is properly tuned, spin j’s oscillations will be resonant with the
effective external field only at the required mj value. If mj does not have the required value, spin j’s
oscillations are strongly off-resonant. This off-resonance effects the projectors in equation (2). Rules that
activate at multiple mj values, like rule T14, which activates when mj = 0, 2, would require additional fields
and resonances [59].

5.2. From the Ising model to the Rydberg-atom quantum simulator
Rydberg atoms are natural platforms for experimental implementations of the Ising model [98] in the
parameter regime described above. Indeed, the Rydberg blockade naturally realizes the energy penalty
necessary for implementing a QCA. The blockade has been experimentally observed [23] and recently
exploited to simulate lattice gauge theories [99–101].

Each atom’s ground state |g〉 ≡ |0〉 is coupled to a highly excited Rydberg state |r〉 ≡ |1〉 via the Rabi
frequency Ω. Atoms j and k 	= j experience the isotropic van der Waals interaction Vjk = C6/a6

jk. The C6 > 0
denotes an experimental parameter, and ajk > 0 denotes the interatomic separation. We use the notation
Va = Vjk for all |j − k| = 1 and Vnn = Vjk for all |j − k| = 2.

In the next two sections’ numerical simulations, we include the next-highest-order terms, Vho, in the
van der Waals interaction (dashed lines in figures 7(j) and (k)). These Vho, we show, do not affect the results
significantly.

Rydberg atoms evolve under the effective Hamiltonian [23]

ĤRyd. =
Ω

2

∑
j

σ̂x
j +Δ

∑
j

n̂j +
1

2

∑
j	=k

Vj,kn̂jn̂k. (12)

Δ denotes a detuning in the natural Hamiltonian that is transformed and approximated to yield
equation (12) where n̂ = |r〉〈r| = (�̂�− σ̂z)/2. The detuning affects nearly all the atoms uniformly: the
QCA, recall, has boundary sites set to |0〉’s. We implement these boundary conditions by tailoring Δ for the
boundary sites and keeping Δ constant elsewhere.

We map the Rydberg Hamiltonian onto the Ising Hamiltonian as follows. First, the lattice geometry is
chosen such that each site j has 2r nearest neighbors k ∈ Ωj. Second, we set the interatomic distance a such
that Va = 4J for the neighbors k ∈ Ωj. Third, we set Ω = 2hx and Δ = −2(hz + 2rJ).

In the Ising Hamiltonian, Vj,k = 0 for every site k outside Ωj. This condition is well-approximated by the
Rydberg Hamiltonian (12), due to the van der Waals interaction’s rapid decay with separation. We fix
parameters to reflect the physics of 87Rb atoms with the excited state |r〉 =

∣∣70S1/2

〉
, for which

C6 = 863 GHz μm6, the interatomic distance a � 5.4 μm, and Ω = 2 MHz � Va � 35 MHz [23]. Using
the above mapping, a QCA which flips the spin of a qubit at the center of a radius-r neighborhood with
magnetization m may be approximated by setting Δ = Va(m/2 − r).

5.3. Simulating TR rules with the Rydberg Hamiltonian
Here, we specify the parameters needed to simulate rules T6, T1 and T8 with the Rydberg Hamiltonian.
Consider a linear atom chain, with interatomic distance a, in the Rydberg-blockade regime (figure 7(j)).
Appropriately setting the detuning Δ can enhance the oscillations undergone by a neighborhood’s central
spin, conditionally on the spin’s neighbors.

The analog version of rule T1 imposes the Hamiltonian

Ĥ =
∑

j

P̂(0)
j−1σ̂

x
j P̂(0)

j+1. (13)

The Ising Hamiltonian implements the projectors when the resonance condition is imposed between
|000〉Ωj

and |010〉Ωj
. In each of these states, two neighbors occupy |0〉’s; two neighbors point upward, so the

magnetization is m = 2. Hence the resonance condition implies that hz = −2J, or Δ = 0 for the Rydberg
Hamiltonian. Rule T8 effects the Hamiltonian (13), except each P̂(0) is replaced with a P̂(1). Hence m = −2,
and hz = 2J, i.e. Δ = −2Va.

The Goldilocks rule T6 implements the Hamiltonian

Ĥ =
∑

j

(
P̂(0)

j−1σ̂
x
j P̂(1)

j+1 + P̂(1)
j−1σ̂

x
j P̂(0)

j+1

)
. (14)

The resonance must be enhanced when the neighboring sites satisfy m = 0. Hence we set hz = 0 or,
equivalently, Δ = −Va in the Rydberg Hamiltonian.
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Numerical simulations comparing analog QCA and their Rydberg-atom implementation for T1 are
shown in figures 7(a)–(c). Figures 7(d)–(f) shows the comparison for T6. The QCA simulations (in each
figure triplet’s leftmost column) agree qualitatively with the Rydberg simulations (depicted in the center
column). Each figure triplet’s rightmost column compares the QCA and Rydberg simulations on the same
axes at key sites. The agreement exists despite the small, high-order interaction terms Vho ∼ Va/64
(figure 7(j)).

5.4. Simulating FR rules with the Rydberg Hamiltonian
Simulating the FR rules with Rydberg atoms requires that excited next-nearest-neighbor atoms have the
same interaction energy as nearest-neighbor atoms. One can meet this condition by forming a zigzag lattice,
shown in figure 7(k). In this arrangement, the distance ajk for all |j − k| = 1 is equal to the distance ajk for
all |j − k| = 2. Hence the interaction energies are equal: Vnn = Va.

We discuss, as an example, the implementation of the Goldilocks rule F4. According to this rule, a
neighborhood’s central spin changes state if 2 of its 2r = 4 neighbors are in |1〉’s. Hence, as for T6, m = 0,
leading to the resonance condition Δ = −2Va. Figures 7(g)–(i) depict the numerical results, and figure 7(k)
depicts the atomic arrangement. The plots confirm strong qualitative agreement between the QCA
dynamics and the quantum-simulator dynamics. Due to the lattice geometry, higher-order interaction
terms are larger for F4 than for T1 and T6: in the F4 case, Vho ∼ Va/27. Consequently, the QCA dynamics
diverge from the Rydberg dynamics more: the entangled breather remains in the Rydberg simulation, but
with about half the oscillation frequency. We have checked that, if the higher-order interaction terms are
suppressed, the agreement is significantly improved, supporting the mapping between the Rydberg
Hamiltonian (12) and the QCA Hamiltonian.

The Rydberg-atom dynamics agree visually with the analog QCA. We quantify the agreement with the

normalized absolute deviation |
〈
σ̂z

j

〉
QCA

−
〈
σ̂z

j

〉
Ryd.

|/2, averaged over sites j and times t ∈ [0, 20]. The

results are 3.9% for T1, 5.9% for T6, and 4.2% for F4 —all errors are of, or slightly above, order 1%.
Thus, Rydberg atoms offer promise for quantum simulation of QCA, for the observation of complexity’s

emergence under Goldilocks rules, and for studying QCA’s robustness with respect to
physical-implementation details.

6. Conclusions

We have bridged the fields of QCA and complexity science, discovering the emergence of physical
complexity under Goldilocks rules. Goldilocks rules balance activity and inactivity. This tradeoff produces
structured entangled quantum states. These states are persistently dynamic and neither uniform nor
random, according to complexity measures. Complexity signatures of Goldilocks rules include high
clustering; short average paths; high disparity fluctuations; broad node-strength distributions; persistent
entropy fluctuations; and robust emergent dynamical features, entangled breathers.

Non-Goldilocks rules still display interesting dynamical features. For example, the PXP model, a
particular case of rule T1, has received much attention. As a near-Goldilocks rule, T1 produces some
complexity. However, the confluence of many strong complexity signatures distinguishes the Goldilocks
rules.

This work establishes several opportunities for future research. For example, whether Goldilocks rules
are integrable merits study. This question is orthogonal to the question of whether Goldilocks rules generate
complexity, the present paper’s focus. The present study, however, offers hints. First, we searched for
nontrivial quantities conserved by the Goldilocks rules. We found only one: T6 with a Hadamard activation
unitary conserves

∑
j σ̂

z
j σ̂

z
j+1, whose sum includes the boundaries, be they fixed or periodic. Second, we

have performed preliminary studies on QCA’s entanglement spectra [102, 103], which suggest that
Goldilocks rules might lie between integrability and nonintegrability [104]. Many more measures have been
leveraged to diagnose integrability and chaos [105–108]; these measures merit scrutiny.

Furthermore, we observed Goldilocks QCA hinder equilibration (section 3). How does this resistance
relate to mechanisms for avoiding thermalization in quantum systems, e.g. many-body localization [109],
quantum scars [110], and Hilbert space fragmentation [108, 111]? Contrariwise, we observed equilibration
under non-Goldilocks QCA. Do they obey the eigenstate thermalization hypothesis [112]?

Finally, we have focused on finite-size systems accessible to classical computing, which exist in the
physical world and can be simulated numerically. The thermodynamic limit forms an alternative, idealized
setting. Do the complexity features observed in our finite systems persist, contract, or grow richer in the
infinite-system-size limit? Preliminary indications based on finite-size scaling in figure 3(d) show that at
least one of our complexity measures stays large for Goldilocks rules in the thermodynamic limit, namely
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clustering. Disparity and entropy fluctuations presents a borderline cases that cannot be resolved on classical
computers based on our present studies, as their decay is slow and may in fact be leveling off to a plateau.
Likewise, given that quantum entangled breathers require about 6 and 7 sites including their supporting
tails, finite-size scaling based on multiple breathers as fundamental emergent objects is inaccessible on
classical resources. For example, to scale to 10 breathers requires 60–70 qubits. Thus, understanding
complexity in the thermodynamic limit is overall a good case for usage of quantum computers [30], and
presents an excellent topic for future research in NISQ-era computing.

Aside from these theoretical opportunities, we have demonstrated that extant digital and analog
quantum computers can implement our QCA. For example, Rydberg atoms can be arranged to engineer
five-site QCA neighborhoods, large enough to support an entangled breather. Also, digital quantum
computers can simulate QCA dynamics that support complexity even with three-site neighborhoods. Our
work therefore uncovers a direction for experimental quantum computation: to explore the rich features of
biological and social complexity that manifest in simple, abiological quantum systems.
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Appendix A. Methods and definitions

Throughout this work, we use various quantifiers of quantum dynamics. This appendix details those
methods and definitions.

A1. Local expectation values
Let Ôj denote an observable of qubit j. The observable has a dynamical expectation value of〈
Ôj

〉
(t) = Tr

(
ρ̂j(t)Ô

)
, where ρ̂j(t) denotes the site-j reduced density matrix, calculated by partially

tracing over the whole-system density matrix ρ̂(t) = |ψ(t)〉 〈ψ(t)|, i.e. ρ̂j(t) = Trk 	=jρ̂(t).

A2. Entropy
Let A denote a subsystem in the state ρ̂A = Trj/∈A(ρ̂). The order-α Rényi entropy is defined as

s(α)
A =

1

1 − α
log2

[
Tr(ρ̂αA)

]
(A1)

for α ∈ [0, 1) ∪ (1,∞). In the limit as α→ 1, the Rényi entropy becomes the von Neumann entropy:

sA ≡ s(1)
A = −Tr

(
ρ̂A log2 ρ̂A

)
= −

dim(A)∑
i=0

λi log2(λi). (A2)

The sum runs over the eigenvalues {λi} of ρ̂A. The set {λi} of eigenvalues is called the entanglement
spectrum of subsystem A.

We distinguish three subsystems for entropy calculations. First, the local entropy s(α)
j is the jth site’s

entropy. Second, the two-point entropy, s(α)
j,k for j 	= k, is of a pair of sites. Third, the entropy of the

subsystem formed by cutting the lattice in half is denoted by sbond. If the system has an odd number L of
sites, the central bond lies between sites (L − 1)/2 and (L + 1)/2.
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Figure 8. We generalize the activation unitary from a Hadamard gate to a Hadamard gate times an azimuthal phase gate of angle
υ. The long-time trends that distinguish rule T6 remain. (a) Clustering, (b) disparity fluctuations, and (c) bond entropy
fluctuations at averaged over times t ∈ [500, 1, 000]. As in the main text, these simulations are performed with L = 19 qubits, an
initial condition of a single |1〉 centered in |0〉’s, and boundary qubits fixed to |0〉’s.

A3. Mutual information
The order-α quantum Rényi mutual information between sites j and k 	= j is

M(α)
jk =

1

2

∣∣∣s(α)
j + s(α)

k − s(α)
jk

∣∣∣ . (A3)

The 1/2 is unconventional but normalizes the mutual information such that 0 � M(α)
jk � 1. We define

M(α)
jj = 0 and interpret M(α)

jk as the adjacency matrix of a weighted, undirected graph that lacks
self-connections. The absolute value in equation (A3) is necessary only for α > 1.

For α = 1, the mutual information is positive-definite. It has the physical interpretation of
upper-bounding every two-point correlator [77]. Hence a nonzero M(1)

jk reflects two-point correlations. We

focus on M(1)
jk because of it’s experimental accessibility, owing to the fact that Mjk considers subsystems of

two qubits or fewer. We have found the complexity outcomes for α = 1, 2 are qualitatively similar, as in the
context of quantum phase transitions [73]. To simplify notation, we drop the (α) superscript in section 3.
An adjacency matrix can be defined alternatively in terms of two-point correlators, but they capture
complexity less than mutual information does [73].

Appendix B. Relation between analog and digital time-evolution schemes

We will prove that evolution under analog three-site QCA is equivalent to evolution under the digital
three-site QCA. Consider the radius-1 analog QCA TR, with rule number R =

∑
m,n cmn22m+n. According to

equation (2), the three-site Hamiltonian has the form

Ĥj =

1∑
m,n=0

cmnP̂(m)
j−1 σ̂

x
j P̂(n)

j+1. (B1)

The state vector is evolved for a time δt by the propagator Û = exp(−iδtĤ). For all j and k such that
|k − j| 	= 1, [Ĥj, Ĥk] = 0. Hence the propagator factorizes into even and odd parts at order δt2:
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Figure 9. Goldilocks rule T6 generates the most complexity even under various boundary conditions and when initial states are
generalized to ensembles. The long-time averages of (a) clustering, (b) disparity fluctuations, and (c) bond-entropy fluctuations
are shown for various TR rules and excitation probabilities p. The results are shown for boundaries fixed to |0〉’s (left columns),
boundaries fixed to |1〉’s (center column), and periodic boundaries (right column). For these simulations, the system size is
reduced to L = 15, and the long-time average is taken for t ∈ [250, 500], to mitigate computational expense.

Û ≈
(
Πj∈{1,3,5,...}Ûj

)
·
(
Πj∈{0,2,4,...}Ûj

)
. The local propagator has been defined as Ûj = exp(−iδtĤj). This Û

is equivalent to the circuit that runs the digital TR simulations, up to the unitary activation operator V̂ j.

Now, we relate the discrete-time scheme’s V̂ j to the continuous-time scheme’s ĥj = σ̂x. We expand the

local propagator as Ûj = �̂�− iδtĤj − δt2Ĥ2
j /2! + iδt3Ĥ3

j /3! + · · · The projectors are orthogonal,

P̂(m)
j P̂(n)

j = δmnP̂(m)
j , and the Pauli operators square to the identity: (σ̂x)2 = �̂�. Therefore, powers of the

Hamiltonian can be expressed as Ĥ2k
j =

∑
m,n cmnP̂(m)

j−1�̂�P̂(n)
j+1 and Ĥ2k+1

j = Ĥj for k = 1, 2, . . . . Hence the
matrix exponential simplifies to

Ûj =

1∑
m,n=0

P̂(m)
j−1

[
(1 − cmn)�̂�+ cmn exp(iδtσ̂x

j )
]

P̂(n)
j+1

=

1∑
m,n=0

P̂(m)
j−1 exp (iδtσ̂x

j )cmn P̂(n)
j+1.

The last line has the form of the three-site update unitary in equation (8). The parallel suggests an
activation unitary exp(iδtσ̂x).

Appendix C. Supplemental material

In this appendix, we provide additional analysis of several digital TR rules to support our claim that
Goldilocks rules produce physical complexity for a variety of activation operators, initial states, and
boundary conditions. Additionally, we provide an alternative visualization of the data in figure 2. We
illustrate the class of non-Goldilocks rules with T13, a rule not covered in the main text, for the sake of
exhibiting a wider variety of QCA. T13 updates a site j if (i) both neighbors are in |0〉’s, (ii) both neighbors
are in |1〉’s, or (iii) the right-hand neighbor is in |1〉, while the left-hand neighbor is in |0〉. This rule is
nontotalistic.
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Figure 10. Visualizing the expectation value
〈
σ̂z

j

〉
of the Pauli-z operator (a)–(c), the expectation value

〈
σ̂x

j

〉
of the Pauli-x

operator (d)–(f), and the von Neumann entropy sj (g)–(i). Each column is labeled by the sites j on which the measures are
evaluated. The line colors denote the five rules considered in the main text. These simulations are performed for L = 19 qubits
and up to 57 time units. The boundary qubits are fixed to |0〉’s. The digital TR rules use a Hadamard unitary activation operator
and are initialized to |. . . 000 1 000 . . .〉. The analog FR rules use a Pauli-x Hermitian activation operator and are initialized to
|. . . 000 101 000 . . .〉.

For a more general activation operator, we consider the product of a Hadamard and a phase gate:
V̂(υ) = ÛHÛphase(υ). In the matrix representation with |0〉 = (1, 0)T and |1〉 = (0, 1)T,

V̂(υ) → 1√
2

(
1 eiυ

1 −eiυ

)
. (C1)

The main text details the υ = 0 case.
Figure 8 shows key complexity metrics: the mutual-information-network clustering (panel (a)),

disparity fluctuations (panel (b)), and bond-entropy fluctuations (panel (c)) are observed under various
rules and phase-gate angles υ. The long-time averages are calculated over the interval t ∈ [500, 1, 000]. The
Goldilocks rule T6 exhibits the largest clustering, disparity fluctuations, and entropy fluctuations for all υ.
Like T6, the near-Goldilocks rule T1 is, in comparison to the other rules, less sensitive to nonzero υ.
Conversely, the near-Goldilocks rule T14 and the far-from-Goldilocks rule T13 produce the most variation
with υ and the lowest overall values at late times.

Let us next consider the complexity outcomes for alternative initial and boundary conditions (figure 9).
We initialize each QCA in a random product state where each qubit is set to |1〉 with probability p and
otherwise set to |0〉. The QCA evolution is performed; and the reduced density matrices of single sites,
two-site pairs, and the central bipartition are recorded at each time step. The process is repeated 500 times
with different realizations of the initial condition. At each time step, the reduced density matrices are
averaged across the trials. From the ensemble-averaged reduced density matrices, we compute the
long-time-average clustering (row (a)), disparity fluctuations (row (b)), and entropy fluctuations (row (c)).
We repeat these simulations for boundaries fixed to |0〉’s (left column), boundaries fixed to |1〉’s (center
column), and periodic boundary conditions (right column).

Boundary conditions play a relatively insignificant role in determining complexity outcomes, as
compared to initial conditions. Also, the clustering and entropy fluctuations are near their minimum, for all
rules, with initial conditions near p = 50%. Disparity fluctuations, in comparison, appear less sensitive to
changes in the initial state. The Goldilocks rule T6 generally maintains the highest clustering, disparity
fluctuations, and entropy fluctuations for all p. The primary exception is near p = 50%, where the
near-Goldilocks rule T1 exhibits a greater clustering. As stated in section 1, complexity is not signaled by
any single measure; the confluence of several signals suggests complexity. Thus, seeing T6 and T1 swap their
ordering for one measure evaluated in a specific parameter regime is not cause for alarm. Rather, it is
noteworthy that at p = 50% the qubit initialization process is governed by a probability distribution of
maximal (classical) entropy: any emerging complexity must work against an already randomized system.
Even so, rule T6 (and also T1) continue to show signs of complex network structure and persistent entropy
fluctuations. The situation is different for the far-from-Goldilocks rule T13, which appears the least complex
for all initial conditions.
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Finally, figure 10 shows the one-point dynamics as a function of time for key sites. This visualization
provides an alternative to figure 2 that allows one to compare more directly the site-local observables for
various QCA rules.
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