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The goal of quantum metrology is to improve measurements’ sensitivities by harnessing quantum
resources. Metrologists often aim to maximize the quantum Fisher information, which bounds the
measurement setup’s sensitivity. In studies of fundamental limits on metrology, a paradigmatic setup
features a qubit (spin-half system) subject to an unknown rotation. One obtains the maximal quantum
Fisher information about the rotation if the spin begins in a state that maximizes the variance of the rotation-
inducing operator. If the rotation axis is unknown, however, no optimal single-qubit sensor can be prepared.
Inspired by simulations of closed timelike curves, we circumvent this limitation. We obtain the maximum
quantum Fisher information about a rotation angle, regardless of the unknown rotation axis. To achieve this
result, we initially entangle the probe qubit with an ancilla qubit. Then, we measure the pair in an entangled
basis, obtaining more information about the rotation angle than any single-qubit sensor can achieve. We
demonstrate this metrological advantage using a two-qubit superconducting quantum processor. Our
measurement approach achieves a quantum advantage, outperforming every entanglement-free strategy.
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Phase estimation is crucial to quantum information
processing: In several algorithms, phase estimation iden-
tifies unitary operators’ eigenvalues [1–6]. Furthermore,
phase estimation serves in quantum metrology, the use of
quantum systems to probe and estimate physical parame-
ters [7–9]. Conventionally, phase estimation requires prior
knowledge about the unitary being probed.
For example, consider a unitary eiH generated by a

Hamiltonian H. In quantum algorithms, phase estimation
encodes in a qubit register an estimate of an eiH eigenvalue
[10,11]. To perform this encoding, one initializes another
register in an H eigenstate. Without information about H,
conventional algorithmic phase estimation fails.
In quantum metrology, phase estimation is used to infer

some unknown parameter α in a unitary Uα ¼ eiαA. The
Hermitian generator A ¼ P

i aijaiihaij has eigenstates jaii
and eigenvalues ai. α could quantify an unknown field’s
strength. One can estimate α by applying Uα to several
quantum systems and measuring them. The optimal single-
qubit probe states are the equal-weight superpositions of
the jaii associated with the greatest and least eigenvalues,
e.g., ðjamini þ jamaxiÞ=

ffiffiffi
2

p
[7–9]. The optimal measure-

ment observables depend on A, too. Without information
about A, therefore, conventional metrological phase esti-
mation fails.
IfH or A is unknown, one can first learn about it through

quantum-process tomography [12–15]. However, process

tomography requires many applications of eiH or Uα, plus
many measurements. The number of applications of a
unitary quantifies resource usage in quantum computing
and metrology. Hence tomography is costly. Furthermore,
one often cannot leverage process tomography. For
example, consider a magnetic field whose direction
changes. We might wish to measure the field strength
α at some instant. The probes must be prepared optimally
beforehand.
Recently, [16] outlined a phase-estimation protocol for

when information about A becomes available after the
unitary operates. The protocol harnesses the mathematical
equivalence between certain entanglement-manipulation
experiments and closed timelike curves, hypothetical
worldlines that travel backward in time [17–22]. In the
protocol of [16], one entangles a probe and ancilla. After
information about A becomes available, one effectively
updates the probe’s initial state, by measuring the ancilla,
using the equivalence. This prescription inspires metro-
logical protocols that leverage entanglement to circumvent
requirements of prior information. Optics experiments have
explored the relationship between entanglement manipu-
lation and closed timelike curves [23,24]. Additionally,
delayed-choice quantum-erasure experiments [25,26]
resemble the protocol in [16] conceptually. However,
metrological protocols inspired by closed timelike curves
have not been reported.
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We show that entanglement manipulation can enable
optimal estimation of α, even sans information about A. We
consider a common scenario: an arbitrary unbiased esti-
mator α̂ is calculated from N measurement outcomes. The
Fisher information (FI) Iα quantifies the outcome proba-
bilities’ sensitivity to small changes in α. Iα, defined below,
limits the estimator’s variance through the Cramér-Rao
bound: varðα̂Þ ≥ 1=ðNIαÞ. We theoretically prove that
entanglement can boost the FI of α by 50%. Our protocol
is optimal, achieving the FI of the optimal protocol that
leverages knowledge of A. Using superconducting qubits,
we demonstrate the advantage experimentally.
The next sections present and experimentally demonstrate

four strategies for inferring about α without knowledge of
the rotation axis n̂. A single-qubit sensor can extract no
information about α. Two time-travel-inspired protocols
follow: hindsight sensing consumes a maximally entangled
two-qubit state. The protocol achieves an FI of 1 if infor-
mation about n̂ becomes available eventually. Agnostic
sensing requires a maximally entangled two-qubit state
and an entangling measurement. The protocol achieves an
FI of 1 even if n̂ remains unknown. We compare these
entanglement-boosted protocols to entanglement-free sens-
ing with an ancilla whose FI is 2=3.
Single-qubit quantum sensor.—The simplest quantum

sensor is a qubit probe subject to an unknown rotation,
represented by Uα ¼ exp ð−iαn̂ · σ=2Þ. The unknown rota-
tion angle is α, n̂ ¼ sin θ cosϕx̂þ sin θ sinϕŷþ cos θẑ
defines the unknown rotation axis, and σ ¼ ðX; Y; ZÞ
denotes a vector of Pauli operators. θ and ϕ denote the
polar and azimuthal angles. Figure 1(a) illustrates the
protocol: the probe is prepared in jψi, evolves to jψαi ≔
Uαjψi, and is measured projectively. One aims to infer the
rotation angle α.
Consider measuring the probe in an arbitrary basis fjiig.

Outcome i occurs with probability Pi ¼ jhijψαij2. The
FI quantifies these probabilities’ α sensitivity: Iα ¼P

i¼0;1½ð∂αPiÞ2=Pi�. The FI is upper bounded by the
quantum Fisher information (QFI), Iα [7,27]:

Iα ≤ Iα ¼ 4ðh∂αψαj∂αψαi − jhψαj∂αψαij2Þ. ð1Þ

The QFI, itself, is upper bounded by the maxi-
mum variance of the generator n̂ · σ̂=2 of Uα: Iα ≤
4maxjψifvarðn̂ · σ̂=2Þg ¼ 1. Consider the many-trial limit
(as N → ∞). If n̂ is known, all bounds (including the
introduction’s Cramér-Rao bound) can be saturated:

varðα̂Þ ¼ 1

NIα
¼ 1

NIα
¼ 1

4Nmaxjψifvarðn̂·σ̂2 Þg
¼ 1

N
: ð2Þ

If n̂ is unknown, neither saturation happens, typically [28].
Figure 1(b) depicts the protocol on the Bloch sphere.

Without loss of generality, the rotation axis lies in the
x̂–ẑ plane. We choose the pure initial state’s Bloch vector

to be ψ̂ ¼ sinðλÞx̂þ cosðλÞẑ, illustrating diverse metro-
logical outcomes, from worst to optimal. Figure 1(b)
shows two possible initial states, with λ ¼ 0 (red) and
λ ¼ −π=4 (blue). The Supplemental Material [28] details
single-qubit rotations’ implementation. The rotation
evolves the probe state to jψαi. Our later analysis
governs all α∈ ½−π; π�, but illustrating with infinitesimal
rotations dα first is instructive. An infinitesimal rotation
displaces the Bloch vector by an amount dψ ¼ n̂×
ψ̂dα ¼ sinðλ − θÞŷdα ¼ ŷdhYi. Therefore, an optimal
final measurement is of Y.
Figure 1(c) displays data from optimal measurements.

We show −hYi at multiple α values for the initial state
λ ¼ 0 and rotation-axis parameter θ ¼ π=2. We calibrated
and corrected for the ≈98% measurement fidelity through-
out this Letter [28]. Fitting the outcomes to a sinusoid,
we infer the Pis at α ¼ 0. From them, we calculate
Iα ¼ 1.03� 0.05, consistently with the maximum pre-
dicted QFI.
Figure 1(d) displays the measured FI for various rotation

axes. The red curve (initial state parametrized by λ ¼ 0)
shows that the maximum FI is achieved only when
θ ¼ π=2. The blue curve (initial state with λ ¼ −π=4)

FIG. 1. Fisher information achievable with single-qubit sensor.
(a) Protocol for sensing the rotation angleα. Time runs vertically, as
in the closed-timelike-curve representation introduced later.
(b) Bloch-sphere representation of the protocol. The red and blue
lines represent possible initial states. The green arrow indicates the
rotation axis. (c) Outcomes from preparing ψ̂ ¼ ẑ, then rotating
about the x̂ axis through a varying rotation angle α. The red points
and curve represent themeasured−hYi values, fromwhichwe infer
theFI (�1 standard deviation). (d) FImeasured at various rotational
axes parametrized byθ. If the initial state is ψ̂ ¼ ẑ (red curve), the FI
fails to achieve its maximum value, except if θ ¼ π=2 specifies the
rotation axis. An analogous statement concerns ψ̂ ¼ ðẑ − x̂Þ= ffiffiffi

2
p

(blue curve) and θ ¼ π=4.
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shows a maximum FI only at θ ¼ π=4. These results
illustrate an above-mentioned point: one can generally
obtain the maximum FI about α only if prior knowledge
about θ informs the probe’s preparation and measurement.
This limitation betrays a deeper problem with the single-
qubit probe [28]: Uα has three unknown parameters,
whereas a qubit has 2 degrees of freedom (d.o.f.).
Estimating α, without knowing the rotation axis, is there-
fore typically impossible.
Hindsight sensing.—We relax the requirement of prior

knowledge about n̂, harnessing the connection between
closed timelike curves and entanglement [21,22,56,57].
Consider preparing a maximally entangled (Bell) state
[the ∪ symbol in Fig. 2(a)] between two qubits at time
T1. One can view this preparation as the chronology-
violating trajectory of one qubit that travels backward in
time, turns around at T1, and continues forward in time
[19–22]. We harness this connection to effectively choose a
probe’s initial state in hindsight.
Figure 2(a) illustrates this strategy. At T1, we initialize a

probe qubit and an ancilla qubit in a singlet. A unitary Uα

rotates the probe’s state about an unknown axis n̂.
Afterward, n̂ is revealed; Eq. (2) can be satisfied. We
measure the ancilla along an axis orthogonal to n̂. The
measurement projects the ancilla onto an optimal rotation-
sensing state. The probe’s state becomes orthogonal to the
ancilla’s. One can imagine that the time-traveling qubit in
Fig. 2(a) is flipped at T1. Hence closed timelike curves
inspire our experiment.
In previous metrology protocols [58–61], an ancilla

measurement determined whether the probe would undergo
a final, information-acquiring measurement. Our protocol
always features probe and ancilla measurements. The
ancilla-measurement outcomes help us postprocess the
data from probe-measurement outcomes to infer about α.
All four Bell states [11] serve equally well, we prove

in [28]. We illustrate with the singlet, whose effectiveness
we understand intuitively through the state’s rotational
invariance:

jΨ−i ¼ 1ffiffiffi
2

p ðjbiPjb̄iA − jb̄iPjbiAÞ: ð3Þ

P denotes the probe; and A, the ancilla. The structure of
jΨ−i does not depend on the single-qubit basis fjbi; jb̄ig;
jΨ−i remains invariant under identical rotations of P and A.
Denote by ja0i and ja1i the −n̂ · σ̂=2 eigenstates associated
with the eigenvalues þ 1

2
and − 1

2
. Define the superpositions

ja�i≡ ðja0i � ja1iÞ=
ffiffiffi
2

p
. Measuring the ancilla’s fja�ig

projects the probe onto an optimal state for measuring α.
Figure 2 details this protocol’s experimental implemen-

tation. Using a parametric entangling gate, we prepare
the probe and ancilla in a singlet [28]. We then rotate the
probe and perform tomography on the probe-ancilla state.
Figure 2(b) displays the measured probe expectation values

when θ ¼ π=2 parametrizes the rotation axis. These expect-
ation values encode no information about α, the flat curves
indicate. This lack is expected, since each qubit’s reduced
state is maximally mixed.
To learn about α, we calculate two-qubit correlators.

Figure 2(c) illustrates with hYZi. Using entanglement, we
reproduce the results of Fig. 1(c): measuring the ancilla’s Z
projects the probe’s Bloch vector onto �ẑ, which are
optimal for sensing α. However, the sensor’s sensitivity
depends on the rotation axis. hYZi and hZZi cannot register
rotations about the ẑ axis (θ ¼ 0), Fig. 2(d) shows.
We interpret these results using closed-timelike-curve

language [62]. When the qubits are initialized in a singlet at
T1, the probe is configured agnostically: for every axis m̂,
hσ · m̂i ¼ 0. The probe is waiting for the optimal-state

FIG. 2. Hindsight sensing. (a) Protocol for sensing the rotation
angle α by mimicking a closed timelike curve. The ancilla’s state
effectively travels backward in time. It flips at T1, becoming an
optimal probe state. (b) No probe observable’s expectation value
carries information about α. (c) If the rotation is about the x axis
(if θ ¼ π=2), the probe-ancilla correlators hYZi and hZZi encode
information about α. (d) For different rotations about the z axis
(θ ¼ 0), the same correlators contain no information about α.
(e) The correlator hYAi depends on the optimal ancilla observable
to measure. hYAi is sensitive to the rotational angle α, at rotation
axes parametrized by θ ¼ 0, π=4, and π=2. (f) From the
correlator, we calculate the FI, for various rotational axes. The
FI remains close to the optimal value, 1. The subfigure indicates
the optimal ancilla measurement axis â.
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input from the future. The probe is rotated—and the
ancilla’s optimal basis, fja�ig, is measured at T2. The
measurement projects the ancilla’s state onto ja�i. This
state is effectively sent backward in time and flipped into
ja∓i, to serve as the probe’s time-T1 state. Thus, the probe
is retroactively prepared in the optimal state; is rotated with
Uα; and, at T2, undergoes a Y measurement.
Figure 2(e) demonstrates that we can obtain the maxi-

mum FI by measuring the ancilla n̂-dependently, as by
measuring fja�ig. Figure 2(f) displays the FI obtained
when θ∈ ½0; π� parametrizes the rotation axis. Regardless
of the axis, we obtain a QFI of ≈0.82. This value is less the
maximum possible QFI, due to the entangled-state prep-
aration’s finite fidelity [28].
Agnostic sensing.—The previous section’s protocol lets

us effectively choose the probe’s initial state after Uα. Yet
an entangling measurement, beyond the entangled initial
state, enables an optimal sensing strategy that requires
neither prior nor later knowledge of the rotation axis: what
we term an agnostic sensor. Similar protocols have been
studied in different settings [22,63,64].
Figure 3(a) sketches the protocol. Again, we initialize the

probe and ancilla in a singlet, jΨ−i. The probe undergoes
an unknown rotation Uα, which maps jΨ−i to

jΨ−
α i ¼

1ffiffiffi
2

p ðeþiα
2ja0iPja1iA þ e−i

α
2ja1iPja0iAÞ: ð4Þ

Finally, we perform an entangling measurement of
fΠ0 ≔ jΨ−ihΨ−j;Π1 ≔ 1 − Π0g. The possible outcomes’
probabilities are

P0 ≔ jhΨ−
α jΠ0jΨ−

α ij2 ¼ cos2ðα=2Þ and ð5Þ

P1 ≔ jhΨ−
α jΠ1jΨ−

α ij2 ¼ sin2ðα=2Þ: ð6Þ

This strategy produces the maximum FI about α, regardless
of the rotation axis [7]. More broadly, Eq. (2) holds.
We can understand this result through closed timelike

curves. If α ¼ 0, then Uα does not perturb the initial state
jΨ−i, and P0 ¼ 1. The ancilla-probe pair maps onto a
particle traversing a closed timelike curve infinitely many
times [21,22]. If α ≠ 0, Uα imprints α on the state. This
experiment has a probability P0 < 1 of successfully sim-
ulating a closed timelike curve. Knowing this success
probability enables us to estimate α.
Figure 3 details our experimental demonstration. We

prepare the singlet via an
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate [28]. The probe

then undergoes Uα. We measure fΠ0;Π1g by rotating the
ancilla, performing another

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
, (this process maps

the singlet onto separable states), and measuring each
qubit’s Z eigenbasis. From many trials, we infer P0.
We measure P0 for rotations about the x̂, ŷ, and ẑ axes,

for several α values [Figs. 3(b)–3(d)]. As expected, P0 ∝
cos2ðα=2Þ, independently of the rotation axis. We fit P0

near α ¼ −π=2 to infer the FI. Figure 3(e) displays the
measured FI for rotation axes θ∈ ½0; π�: regardless of the
axis, Iα ¼ 0.72.
The two-qubit gate’s fidelity limits the FI, as in hindsight

sensing. Agnostic sensing requires two such gates, so the
infidelity impacts the FI more. This proportionality high-
lights a trade-off between quantum advantage and
circuit depth.
Entanglement-free sensing with ancilla.—Let us com-

pare the agnostic sensor with an optimal entanglement-free
sensor. Imagine restricting the probes to identical single-
qubit pure states. All pure states serve equally well, by
symmetry: the rotation axis is unknown. Without loss of
generality, therefore, we suppose the probes begin in
jψi ¼ j0i. Three independent, unknown parameters specify
Uα: the rotation angle α, plus the rotation axis’s zenith
angle θ and azimuthal angle ϕ. One cannot estimate 3
parameters using a qubit, whose state encodes only 2 d.o.f.
For every single-qubit probe, some ðα; θ;ϕÞ values yield
Iα ¼ 0. Hence, no single-qubit probes achieve Eq. (2), we
prove in [28].
Nevertheless, one can estimate α without consuming

entanglement, e.g., by performing quantum-process tomog-
raphy on Uα [13,14]. Since n̂ is unknown, the most
reasonable prior distribution for n̂ is uniform. We describe
a strategy for garnering the greatest average FI inferable from
any entanglement-free input: prepare the probe in a state
jψ ji, tagged with an ancilla state jji, with probability pj:

ρ0 ¼
X

j

pjjψ jihψ jj ⊗ jjihjj; wherein
X

j

pj ¼ 1: ð7Þ

We show the following in [28]. First, for all ρ0, theQFI about
α, averaged over the n̂, equals 2=3. Second, not all ρ0 achieve
the first two equalities in Eq. (2). Third, we derive the form of

FIG. 3. Agnostic sensing. (a) Protocol: The probe and ancilla
are prepared in a singlet. The probe is rotated, whereupon we
measure whether the qubits remain in the singlet. (b) P0 denotes
the probability of obtaining a yes. From P0, we infer the FI.
Different plots follow from rotations about the x̂, ŷ, and ẑ axes.
(c) FI inferred after various rotations in the x̂–ẑ plane.
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the states ρ0 for which (i) Iα ¼ 2=3 independently of n̂ and
(ii) the first two equalities in Eq. (2) hold. Examples include
ρ⋆ ¼ ðjxþihxþ j ⊗ j1ih1j þ jyþihyþ j ⊗ j2ih2j þ jzþi
hzþ j ⊗ j3ih3jÞ=3, where jxþi denotes the eigenvalue-1X
eigenstate, etc. Preparing and optimally measuring ρ⋆ yields
a FI of 2=3 about α [Eq. (C33) in [28] ], irrespectively of n̂. In
[28] we describe our experimental implementation of this
entanglement-free strategy, where we achieve an average
axis-independent FI of 0.62, consistent with the theoretical
maximum of 2=3.
Discussion.—In [65], the authors distinguish a hierarchy

of quantum sensors: some leverage energy-level quantiza-
tion (type I), others leverage quantum coherence (type II),
and others leverage entanglement (type III). We have
introduced a type-III sensor. It achieves an advantage over
the more-classical type-II sensors, when the resource is the
number of times the unitary is applied. The 50% improve-
ment in the QFI weighs against the cost of entanglement
manipulation. One cost that we avoid is postselection: we
discard no data. All measurement outcomes inform our
inference of α, despite a known relationship between
postselection and closed timelike curves [21,22].
Several opportunities suggest themselves. First, our

protocol merits extending to optical [66] and solid-state
systems that have concrete metrological applications.
Second, our protocol may benefit phase estimation in
quantum algorithms. Third, our experiment was inspired
by the theoretical application of closed timelike curves to
metrology [16]—specifically, to weak-value amplification,
a technique for sensing interaction strengths [68–74]. One
can experimentally implement the application to weak-
value amplification or to a more general technique, partially
postselected amplification [60]. Fourth, we anticipate our
technique’s usefulness in metrology subject to time con-
straints. For example, one may need to measure a time-
varying field at some instant [75–77]. To date, optimal
sensing strategies have required a priori knowledge about
the unknown unitary’s generator, A. Our agnostic protocol
entails optimal state preparations and measurements with-
out this knowledge.
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