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Noncommutation is fundamental to quantum theory. The incompatibility of observables is one
crucial difference between classical and quantum mechanics. Thermodynamic laws must apply across
classical and quantum systems. Historically, researchers have implicitly assumed that conserved
quantities in thermodynamic systems commute with each other. When we remove this assumption,
conserved quantities that fail to commute with each other in thermodynamics engender new physics.
One seminal result in thermodynamics for closed quantum many-body systems is the eigenstate
thermalization hypothesis (ETH), which explains how a quantum many-body system thermalizes
internally. The ETH applies across many fields including atomic, molecular, and optical physics,
condensed-matter physics, and high-energy physics. Murthy et al. recently showed that the ETH
does not apply to systems with noncommuting conserved quantities. Murthy et al. posited a
non-Abelian ETH to account for systems with noncommuting conserved quantities. We calculate
numerics to support the non-Abelian ETH. We model a one-dimensional (1D) next-nearest-neighbor
Heisenberg chain of 18 qubits. We represent local operators with matrices relative to an energy
eigenbasis. Our numerics evidence the non-Abelian ETH’s qualitative predictions. Noh et al. also
recently derived a fluctation-dissipation theorem (FDT) from the ETH. With the recently proposed
non-Abelian ETH, we begin numerical calculations in support of an FDT derived from the non-
Abelian ETH. We offer the first comprehensive numerical tests of the non-Abelian ETH and initial
numerics for deriving an FDT for systems that follow the NAETH.

I. INTRODUCTION

We expect thermodynamic laws to hold no matter
the regime – classical or quantum, relativistic or non-
relativistic. Thermodynamics was born from the indus-
trial revolution as scientists and engineers asked ques-
tions about energy, work, and efficiency. Scientists could
describe macroscopic properties and processes such as
temperature and energy transformation without worry-
ing about the microscopic interactions of matter. Con-
sider the second law of thermodynamics; it states that the
entropy of a system must remain constant or increase. A
consequence of this law is that systems in thermal contact
with each other tend to thermalize. This is typically true
for both macroscopic objects and quantum-mechanical
particles. In the rapidly growing field of quantum ther-
modynamics, researchers apply tools from quantum in-
formation to thermodynamic laws for both fundamental
understanding and practical applications [1, 2].

An active area of quantum thermodynamics is the sub-
field of noncommuting charges (conserved quantities) [3].
Consider a system S that exchanges globally conserved
quantities Qtot

a and Qtot
b with an environment E. Fig-

ure 1 illustrates the setup. Historically, in both classical
and quantum thermodynamics, researchers implicitly as-
sumed that [Qtot

a , Qtot
b ] = 0 [4–6]. The subfield of non-

commuting charges focuses on systems where we remove
this assumption, i.e., [Qtot

a , Qtot
b ] ̸= 0. The Hamiltonians

of such systems have a non-Abelian symmetry, so this
subfield is also called non-Abelian quantum thermody-

FIG. 1: A system S exchanging quantities Qtot
a and Qtot

b

with an environment E. The quantities are globally
conserved, so we also call them charges. Figure adapted
from [3]

.

namics. Noncommuting charges give rise to changes in
thermodynamic phenomena. Changed thermodynamic
phenomena include thermodynamic-entropy production
[7, 8] and many-body localization [9, 10]. Noncommu-
tation is a cornerstone of quantum theory, and under-
standing how noncommutation affects thermodynamic
phenomena is foundational to thermal physics.

One thermodynamic phenomenon that noncommuta-
tion of charges impacts is thermalization in closed quan-
tum systems. A closed quantum system challenges
the second law of thermodynamics because the system
evolves unitarily such that its von Neumann entropy re-
mains constant. The second law of thermodynamics says
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that thermalization increases a system’s entropy. There-
fore, we do not expect a closed quantum system to ther-
malize. However, such systems thermalize internally in
the sense that local operators’ expectation values over
time approximately equal their thermal expectation val-
ues. The eigenstate thermalization hypothesis (ETH)
governs this internal thermalization for systems with non-
degenerate, non-integrable Hamiltonians [11–13]. The
ETH has applications to atomic, optical, and molecu-
lar (AMO) physics, quantum chaos, condensed-matter
physics, and high-energy physics [14, 15]. A system with
a non-Abelian symmetry as shown in Fig. 1 does not fol-
low the ETH [16]. Murthy et al. posited the non-Abelian
ETH (NAETH) for Hamiltonians with non-Abelian sym-
metries [16]. Noh began numerical studies of the NAETH
[17]. He studied local operators on a two-dimensional
XXZ Heisenberg model both with and without an SU(2)
symmetry. He found that the matrix elements of local
operators represented in the Hamiltonian energy basis
follow the ETH in both cases. When the model had an
SU(2) symmetry (a non-Abelian symmetry), the matrix
elements also followed a prediction of the NAETH for
certain eigenspaces. The SU(2)-symmetric model had
additional symmetries aside from the SU(2) symmetry.
My work continues these studies with Lasek, Noh, and
Yunger Halpern to provide the first comprehensive nu-
merical support for the NAETH’s predictions [18]. We
numerically evidence the NAETH for a model with only
SU(2) symmetry and no extraneous symmetries.

Systems tend to thermalize to a thermal state, which
is a stationary state. The fluctuation-dissipation theo-
rem (FDT) describes how a system in a stationary state
responds to small perturbations and relates the dynamic
response function and time correlation function [19, 20].
The quantum-mechanical FDT is derived from the Gibbs
state, a thermal stationary state. Noh et al. showed that
a FDT can be derived from the ETH for generic quantum
many-body systems, not just the stationary Gibbs state
[21]. We seek to extend this work to quantum many-body
systems with a non-Abelian symmetry as we may be able
to derive an FDT for such systems from the NAETH. We
calculate numerical statistics to support the NAETH’s
predictions and to derive an FDT from the NAETH. This
thesis draws from work completed in [18] and a pre-print
in preparation [22].

Our numerics confirm four qualitative predictions of
the NAETH and support preliminary work for a FDT
for closed quantum-many body systems with a non-
Abelian symmetry. First, we verify that our Heisenberg
model’s Hamiltonian is suitable for testing the NAETH.
We check statistics from random-matrix theory and find
that our Hamiltonian is non-integrable, a requirement
for a system to follow the NAETH. Then, we investigate
the block-diagonal and off-block-diagonal terms in the
NAETH for a subsector . In our last test of the NAETH,
we plot functions in the NAETH equation and confirm
that they are smooth. We detail one method for obtain-
ing those smooth functions. We use those smooth func-

tions in a preliminary statistic for the FDT. Significance
- contribute to the first thorough numerical support of
the NAETH.
The rest of this thesis is organized as follows. In

Sec. II, we review technical background on the ETH,
the NAETH, the FDT, and the KMS condition. Next, in
Sec. III, we discuss the methods of our numerical anal-
ysis. Following that, in Sec. IV, we present our results
from testing the NAETH and initial checks of a non-
Abelian FDT. In Sec. V, we draw our conclusions and
discuss future outlook from the work.

II. TECHNICAL INTRODUCTION

This section reviews relevant background information.
In Sec. II A, we review the ETH and which conditions
a system must satisfy for the ETH to apply. In Sec.
II B, we introduce spherical tensor operators, which we
will use to analyze the NAETH. There we also introduce
the NAETH and the kinds of systems that the NAETH
governs. Lastly, in Sec. II C, we review the FDT, the
Kubo-Martin-Schwinger (KMS) condition, and their con-
nection to the ETH.

II A. ETH

Consider a closed quantum many-body system gov-
erned by a nonintegrable Hamiltonian H that lacks non-
Abelian symmetries. H has eigenvalues Eα associated
with eigenstates |α⟩. Let A be a local operator and H
be a non-integrable many-body Hamiltonian. A can be
represented as a matrix relative to the energy eigenba-
sis. The ETH is an ansatz for the forms of those ma-
trix elements ⟨α|A|α′⟩. For a matrix element ⟨α|A|α′⟩,
let E := (Eα + Eα′)/2 be the average energy between
Eα and Eα′ . Let ω := (Eα − Eα′) be the difference in
energies. A(E) is a smooth, real function denoting the
microcanonical average of A. f(E , ω) is also a smooth,
real function. The thermodynamic entropy Sth(E) is the
natural logarithm of the density of states. R is a matrix
with random values. A and H satisfy the ETH if

⟨α|A|α′⟩ = A(E) δαα′ + e−Sth(E)/2 f(E , ω)Rαα′ . (1)

We call the first term A(E) δαα′ the diagonal term; it is
nonzero only for matrix elements along the diagonal. We
dub the ETH’s second term e−Sth(E)/2 f(E , ω)Rαα′ the
off-diagonal term.

II B. Spherical tensor operators and NAETH

For a Hamiltonian with a non-Abelian symmetry,
spherical tensor operators are convenient local operators
for computing expectation values and matrix elements.
To introduce spherical tensor operators, we introduce
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the setup that applies throughout the rest of the the-
sis. Consider a quantum many-body system with an
SU(2)-symmetric Hamiltonian H and N ≫ 1 quantum
bits (qubits). The global spin components are Sa=x,y,z

and the global spin-squared operator is S⃗2. H shares

an eigenbasis {|α,m⟩} with S⃗2 and Sz. The eigenener-
gies Eα and total spin quantum numbers sα are labelled
by α. m is the total spin magnetic quantum number.
Throughout the paper, we set ℏ = 1. We have the fol-
lowing relations:

H|α,m⟩ = Eα|α,m⟩, (2)

S⃗2|α,m⟩ = sα(sα + 1)|α,m⟩, and (3)

Sz|α,m⟩ = m|α,m⟩. (4)

The commutation relations

[Sz, T
(k)
q ] = ℏqT (k)

q and (5)

[S±, T
(k)
q ] = ℏ

√
(k ∓ q)(k ± q + 1)T

(k)
q±1 (6)

fully define the spherical tensor operators T
(k)
q [23]. The

raising and lowering operators are S± := Sx ± iSy. The
rank k resembles sα, and q = −k,−k + 1, ..., k resem-
bles m. Spherical tensor operators transform irreducibly
under SU(2).

The Wigner-Eckart theorem is a fundamental the-
orem in quantum mechanics that stipulates the form
of a spherical tensor operator’s matrix elements [23].
Such matrix elements are the product of two factors: a
Clebsch-Gordon coefficient and a reduced matrix element
⟨α||T (k)||α′⟩. (A reduced matrix element is a matrix
element divided out by a Clebsch-Gordon coefficient.)
Non-Abelian symmetries invalidate the ETH because the
matrix-element forms stipulated by the Wigner-Eckart
theorem do not necessarily match the ETH’s predictions
[16].

Now, we introduce the NAETH. As in Sec. II A, the
average energy is E := (Eα + Eα′)/2, and the difference
in energies is ω := (Eα−Eα′). We also define the average
spin quantum number S := (sα + sα′)/2 and the differ-
ence in spin quantum numbers ν := (sα − sα′). Sth(E ,S)
remains the thermodynamic entropy. The NAETH is
an ansatz for the forms of reduced matrix elements
⟨α||T (k)||α′⟩ of a spherical tensor operator T

(k)
q . Let

T (k)(E ,S) be an O(1) smooth function that depends on
the rank k of the spherical tensor operator, E , and S. Let
f
(T )
ν (E ,S, ω) be an O(1) smooth function that depends

on the spherical tensor operator T , ν, E , and S. R(T )
αα′ is

a matrix with values that follow a normal distribution.
The NAETH says that [16]

⟨α||T (k)||α′⟩ = T (k)(E ,S)δαα′

+ e−Sth(E,S)/2f (T )
ν (E ,S, ω)R(T )

αα′ . (7)

This assumption about the reduced matrix elements’
forms, together with additional assumptions, implies
thermalization of a closed quantum many-body system
with a non-Abelian symmetry in some cases.

II C. The FDT and the KMS condition

The FDT describes how quickly a system responds to
small perturbations [19, 20]. Consider a quantum sys-
tem with a Hamiltonian H in an initial state ρi at time
ti. For an observable B, a time-dependent perturbation
δH = −h(t)B applied to the system causes the expec-
tation value of an observable A at some time t′ > ti to
deviate from its unperturbed value. Define the correla-
tion function S̄AB(t, t

′) := ⟨A(t)B(t′)⟩i − ⟨A(t)⟩i⟨B(t′)⟩i,
which depends on the expectation value ⟨⟩i of the state ρi.
The deviation δA depends on the linear-response function

χ′′
AB(t, t

′) :=
1

2ℏ
(S̄AB(t, t

′)− S̄BA(t
′, t)). (8)

The correlation functions obey the KMS condition

S̄AB(t) = S̄BA(−t− iβℏ). (9)

The FDT dictates the relationship between the linear-
response function and the correlation function. From
linear-response theory and the KMS condition, the
fluctuation-dissipation theorem is

χ′′
AB,eq(ω) =

1− e−βℏω

2ℏ
S̄AB,eq(ω). (10)

Noh et al. derived expressions for correlation functions
S̄AB(ω) found in the FDT from the ETH [21]. They ap-
ply the ETH to the operators A and B in S̄AB(ω). A
finite-system-size correction term appears in their ana-
lytic derivation. The correction term disappears in the
limit of infinite system size. We extend Noh’s work to
quantum many-body systems with a non-Abelian sym-
metry. Such systems might satisfy the NAETH. We ask:
Do systems that follow the NAETH also satisfy the KMS
condition? Our numerics in progress work toward an-
swering that question. We have analytically calculated
the finite-system-size correction to an FDT derived from
the NAETH. The expression for the correction term is

ln

[
S̄AA(ω)

S̄AA(−ω)

]
− βω ≃

∑k
ν=−k νX(ν|k)FAA(Eα, sα;ω; ν)∑

ν Xe(ν)Fν(E0, s0, ω)

+

∑
ν νXe(ν)

∂Fν

∂S (E0, s0, ω)∑
ν Xe(ν)Fν(E0, s0, ω)

.

(11)

We will use this equation to begin numerical calculations
that aid in deriving an FDT from a system that follows
the NAETH.

III. METHODS

In this section, we review the particular SU(2)-
symmetric Hamiltonian that we numerically model to
test the NAETH’s predictions. The physical system that
we model is a 1D chain of N = 18 qubits with open
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boundary conditions. Let σ
(j)
a be the a-component of

spin for the j-th site for a ∈ {x, y, z}. The Hamiltonian
of the system is

H =

N−1∑
j=1

Jj σ⃗
(j) · σ⃗(j+1) +

N−2∑
j=1

J

2
σ⃗(j) · σ⃗(j+2) . (12)

The Hamiltonian is non-integrable due to next-nearest-
neighbor couplings. This model globally conserves to-

tal spin components defined by σtot
a :=

∑N
j=1 σ

(j)
a , i.e.

[H,σtot
a ] = 0 ∀ a = x, y, z. However, the total spin com-

ponents do not commute with each other: [σtot
a , σtot

b ] ̸= 0
if a ̸= b.
We eigensolve the Hamiltonian exactly via two com-

putational procedures. Our choice of procedure depends
on the system size. For N ≥ 16 qubits, we use the In-
tel Math Kernel Library and parallel-computing clusters
with large-sparse-matrix operations. For smaller system
sizes (N ≤ 14), we use the Quantum Toolbox in Python
(QuTiP) package. We build the spherical tensor opera-

tors in Python and store the matrix elements ⟨α||T (k)
q ||α⟩.

IV. RESULTS AND DISCUSSION

In this section, we describe our findings from our tests
of the NAETH. In Sec. IV A, we showcase four calcula-
tions that evidence the NAETH’s qualitative predictions.
We analyze the block-diagonal and off-block-diagonal re-

duced matrix elements of a T
(1)
0 operator. We also plot

f
(T )
ν (E ,S, ω) functions and check if they are smooth. In
Sec. IV B, we discuss the in-progress work to determine
whether the NAETH satisfies the KMS condition. These
numerics require f

(T )
ν (E ,S, ω) functions. We discuss each

result’s significance after displaying it.

IV A. Support for the NAETH

In this subsection, we review four qualitative predic-
tions of the NAETH and ancillary calculations support-
ing the main numerics. As a prelude to the primary re-
sults, we confirm that the Hamiltonian is nonintegrable
by plotting energy-gap statistics.

The first statistic we plot is the probability-density
function of the minimal energy-gap ratio between con-
secutive eigenenergies. This statistic confirms that H is
nonintegrable and so should obey the NAETH [24]. For a
given eigenenergy En, consider En+1−En and En−En−1,
which are the differences between En and its neighboring
energy levels. The minimal gap ratio is

Rn := min

{
En+1 − En

En − En−1
,
En − En−1

En+1 − En

}
. (13)

We compute the probability density distribution that any
given gap ratio is of size r. We fit the prediction cal-

FIG. 2: Scatter plot displaying the probability density of
minimal gap ratio values for a system of 18 qubits’ sα = 3,
m = 0 eigenspace. The black curve is the equation PGOE(r)
from random-matrix theory of Gaussian orthogonal
ensembles. The black curve fits the data points well with
R2 = 0.883, suggesting that the Hamiltonian is
nonintegrable.

culated from the random-matrix theory of Gaussian or-

thogonal ensembles, PGOE(r) =
27
4

r(1+r)
(1+r+r2)5/2

[24] to the

computed distribution. Figure 2 shows an example of the
gap-ratio plot and fitted prediction curve for 18 qubits in
the sα = 3, m = 0 eigenspace. The linear-regression co-
efficient for the black curve fitted to the data points is
R2 = 0.883, which suggests that curve fits the data well.
This fit is evidence for the Hamiltonian’s nonintegrabil-
ity.
In our first test of the NAETH, we plot the reduced ma-

trix elements of a T
(1)
0 operator in Fig. 3. The elements

form bands distinguished by sα values. The reduced ma-
trix elements in each band vary in a manner that sug-
gests smoothness. Within each band, the elements have
a finite variance around a mean value, behavior typical
of a distribution governed by a smooth function rather
than randomness. The smoothness of the distribution is
consistent with the T k(E ,S) in the NAETH.
Next, we test the NAETH’s second term (see Eq. 7).

We subtract the smooth functions evidenced in Fig. 3
from ⟨α||T (1)||α⟩ by fitting a linear function to each sα
band and subtracting it from that band’s matrix ele-
ments. This subtraction should leave us with elements
that follow a Gaussian distribution due to the R

(T )
αα′ in

the NAETH’s second term. Figure 4 displays the result-
ing plot after we shift the block-diagonal reduced matrix
elements to remove the mean element. A Gaussian dis-
tribution fits to the data well as the black line in Fig. 4
shows. These numerics support the NAETH’s prediction
of the second term’s form.
Third, we continue to test the NAETH’s second term,

but now we consider the off-block-diagonal reduced ma-
trix elements. Because of the kronecker delta δαα′ in
the first term of the NAETH (Eq. 7), the first term
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FIG. 3: Reduced matrix elements ⟨α||T (1)||α⟩ versus
energy density Eα/N for different sα sectors.

FIG. 4: Histogram of block-diagonal reduced matrix
elements ⟨α||T (1)||α⟩ for sα = 3. The elements are shifted as
we subtract the mean element from the
reduced-matrix-element values. A normal distribution
(shown by the black curve) fits the histogram, which we

expect from R
(T )

αα′ in the NAETH’s second term.

vanishes for off-block-diagonal reduced matrix elements
⟨α||T (1)||α′⟩ when α ̸= α′. Therefore, we plot a his-
togram of the off-block-diagonal reduced matrix elements
⟨α||T (1)||α′⟩ for sα = 3 in Fig. 5. We expect that the el-

ements follow a Gaussian distribution due to the R
(T )
αα′ in

the NAETH’s second term. Our numerics support that
expectation as evidenced by the black curve’s close fit to
the histogram in Fig. 5; the black curve is a Gaussian
distribution.

Lastly, we qualitatively test the f
(T )
ν (E ,S, ω) func-

tions that appear in the second term of the NAETH

(Eq. 7). We plot |f (T )
ν (E = 0, ω)| for different values

of S and ν in Fig. 6. The NAETH says the functions
should be smooth. Despite our finite-system-size numer-
ics yielding discrete sα and Eα values, the plots suggest

FIG. 5: Histogram of off-block-diagonal reduced matrix
elements ⟨α||T (1)||α′⟩ for sα = 3. A normal distribution
(shown by the black curve) fits the histogram, which we

expect from R
(T )

αα′ in the NAETH’s second term.

FIG. 6: Plots of f
(T )
ν (E ,S, ω) for the T

(1)
0 operator and

E = 0. We display plots for various values of S and ν.

that f
(T )
ν (E ,S, ω) are smooth in ω in the thermodynamic

limit.

We describe one method of calculating f
(T )
ν functions.

First, we plot the off-block-diagonal reduced matrix ele-
ments as a three-dimensional (3D) scatter plot (Fig. 7).
The reduced matrix elements lie on the z-axis, and energy
values Eα and Eα′ lie on the x and y axes, respectively.

An example of this plot for 10 qubits and a T
(1)
0 operator

is shown in Fig. 7. We then create a two-dimensional
(2D) surface from the 3D scatterplot by averaging the
reduced-matrix-element values in a small energy window
to a single value. The energy windows have a width of
0.1 in Eα and Eα′ across the entire range of Eα and Eα′ .
Figure 8 displays an example of the 2D surface that Fig.
7 yields. From this 2D surface, we interpolate the re-
duced matrix element values along the Eα = Eα′ axis
to obtain a 1D plot. The 1D plot displays the reduced
matrix elements versus ω = Eα − Eα′ and this yields

f
(T )
ν (E ,S, ω) for a given E and S. Figures 7 - 9 show

each step in the process of calculating f
(T )
ν (E ,S, ω). We
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use 10 qubits for these plots because we were unable to
use this method for larger system sizes, which required
more computational resources than readily available.

FIG. 7: Off-block-diagonal reduced matrix elements

⟨α|T (1)
0 |α⟩ in the (sα = 2, sα′ = 1) subspace for a system of

10 qubits.

FIG. 8: Two-dimensional surface from averaging
off-block-diagonal elements shown in Fig. 7 within Eα and
Eα′ windows of width 0.1. The off-block-diagonal reduced

matrix elements are ⟨α|T (1)
0 |α⟩ in the (sα = 2, sα′ = 1)

subspace for a system of 10 qubits.

IV B. Support for the FDT and KMS condition

We report on the ongoing calculations determining how
well a system that obeys the NAETH also satisfies the
KMS condition. Recall that for two eigenenergies Eα

and Eα′ , the average energy is E = (Eα + Eα′)/2, the
average spin quantum number is S = (sα + sα′)/2, and

FIG. 9: f
(T )
ν (E = 0,S = 1.5, ω) interpolated from the

coarse-grained surface of off-block-diagonal elements for 10
qubits (Fig. 8).

the spin quantum number difference is ν = sα − sα′ .
The NAETH’s off-block-diagonal term contains the fac-

tor f
(T )
ν (E ,S, ω) (see Eq. 7). These f (T )

ν functions appear
in the time correlation function equation derived from the
ETH [21]. When we use similar methods to derive a time
correlation function from the NAETH, we have a similar

dependence on f
(T )
ν functions. Our analytical and nu-

merical work on determining whether a system following
the NAETH satisfies the KMS condition is ongoing.
Two calculations we have completed toward this goal

are computing Fν(E,S, ω) functions and the derivative
∂Fν

∂S of F with respect to S. Both of these terms
are found in the finite-system-size correction term given
by Eq. 11. For the first calculation, Fν(E,S, ω) :=
f−ν(E,S,−ω)fν(E,S, ω). We reuse the f functions from
Sec. IV A to plot Fν against ω. Figures 10 and 11
display Fν versus ω for 18 qubits and spherical tensor

operators T
(1)
0 and T

(2)
0 , respectively. The second calcu-

lation requires approximating the derivative ∂Fν

∂S using
the discrete sα we have. Figure 12 shows the plots of
∂Fν

∂S around the value of S = 2.0. With Fν and ∂Fν

∂S
of F , our next step is to numerically calculate the en-
tire finite-system-size correction term. We leave this as
future work.

FIG. 10: Plot of Fν(E = 0,S = 1.5, ω) for a system of 18

qubits and the T
(1)
0 operator.
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FIG. 11: Plot of Fν(E = 0,S = 1.5, ω) for a system of 18

qubits and the T
(2)
0 operator.

FIG. 12: Plot of ∂Fν(E,S,ω)
∂S

versus ω for E = 0, S = 2.0,

and ν = ±1. The ∂Fν
∂S

s are calculated from the Fν functions.

The ∂Fν
∂S

s will be used in the future to check the
finite-system-size correction term.

V. CONCLUSIONS

Non-Abelian thermodynamics is an active area of re-
search with new fundamental physics results and practi-
cal applications. The ETH is a key finding in many-body
physics describing how a closed quantum many-body sys-
tem thermalizes internally. When the system conserves
quantities that fail to commute with each other, i.e.,
the system has a non-Abelian symmetry, the ETH no
longer holds. The NAETH remedies the conflict between
the ETH and non-Abelian symmetries. We have pro-
vided numerical support for the NAETH, confirming four
of its qualitative predictions. The block-diagonal and
off-block-diagonal reduced matrix elements both follow
normal distributions, as we expect. We find evidence
that the functions in the NAETH’s off-block-diagonal
term are smooth in some variables in the thermodynamic
limit. We compute and plot functions that appear in
the finite-size-correction term for correlation functions

derived from the NAETH. Our results invite further nu-
merical and experimental testing of the NAETH.
We will extend our NAETH numerics to the FDT and

KMS condition. Correlation functions in the FDT can be
derived in the framework of the ETH. These correlation
functions satisfy the KMS condition. For a system with
a non-Abelian symmetry, we will derive similar correla-
tion functions and check if they satisfy the KMS cond-
tion. Our analytics and numerics use finite system sizes,
which yields a finite-system-size correction term to the
correlation functions. In the future, we want to compare
how the finite-system-size correction term for correlation
functions from the ETH and NAETH scale. We aim to
establish the first analytical and numerical support for
a FDT governing a closed quantum many-body system
with a non-Abelian symmetry.
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