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Abstract
Kirkwood discovered in 1933, and Dirac discovered in 1945, a representation of
quantum states that has undergone a renaissance recently. The Kirkwood–Dirac
(KD) distribution has been employed to study nonclassicality across quan-
tum physics, from metrology to chaos to the foundations of quantum theory.
The KD distribution is a quasiprobability distribution, a quantum generaliza-
tion of a probability distribution, which can behave nonclassically by having
negative or nonreal elements. Negative KD elements signify quantum infor-
mation scrambling and potential metrological quantum advantages. Nonreal
elements encode measurement disturbance and thermodynamic nonclassicality.
KD distributions’ nonclassicality has been believed to follow necessarily from
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pairwise noncommutation of operators in the distribution’s definition. We show
that noncommutation does not suffice. We prove sufficient conditions for the
KD distribution to be nonclassical (equivalently, necessary conditions for it to
be classical). We also quantify the KD nonclassicality achievable under various
conditions. This work resolves long-standing questions about nonclassicality
and may be used to engineer quantum advantages.

Keywords: quantum information, quantum foundations, nonclassicality,
quasiprobability, noncommutation

1. Introduction

Heisenberg’s uncertainty principle [1–3] and Bohr’s complementarity principle [4] power
much of the strangeness in quantum mechanics. The principles codify the incompatibility of
simultaneous measurements of certain observables. Despite incompatibility’s essentiality in
quantum physics, how the corresponding nonclassicality is best quantified remains unknown
[5]. Guided by practicality, we use Kirkwood and Dirac’s quasiprobability formalism of quan-
tum mechanics [6, 7], reviewed below. We prove how operator incompatibility underlies, but
does not guarantee, negative and nonreal quasiprobabilities, which signal nonclassical physics
under certain circumstances. We then quantify and bound the distribution’s nonclassicality.

In classical mechanics, a joint probability-density function P (x, p) describes a system’s
position x and momentum p. In quantum mechanics, observables do not necessarily commute.
Representing a state with a joint probability function over observables’ eigenvalues is generally
impossible [8–13].

By forfeiting one of Kolmogorov’s axioms of joint probability functions [14], one can
represent quantum mechanics with a probability-like framework. A quantum state can be
represented by a quasiprobability function over incompatible observables’ eigenvalues. A
quasiprobability behaves like a probability but can assume negative and/or nonreal values.
Many types of quasiprobability distributions exist. The best-known is the Wigner function, a
function of position and momentum [8, 15, 16]. The Wigner function (and the related Sudar-
shan–Glauber and Husimi representations [17–19]) are used extensively in quantum optics
[20], where x and p are swapped for the electric field’s the real and imaginary components.
However, in experiments that lack clear analogs of x and p, the Wigner function is less suit-
able. Furthermore, Wigner-function negativity is neither necessary nor sufficient for nonclas-
sical phenomena: the Einstein–Podolsky–Rosen state [21] has a positive Wigner function
[22], and states expressibly classically in the particle-number basis can have negative Wigner
representations [23].

The Kirkwood–Dirac10 (KD) quasiprobability distribution is a relative of the Wigner func-
tion. Kirkwood [6] and Dirac [7] independently developed the KD distribution to facilitate the
application of probability theory to quantum mechanics. Compared to the Wigner function, the
KD distribution possesses an additional freedom: it can assume nonreal values. Moreover, the
KD distribution is straightforwardly defined for discrete systems—even qubits.

The KD distribution has recently illuminated several areas of quantum mechanics. In
weak-value amplification [28–31], negative KD quasiprobabilities allow pre- and postselected
averages of observables, weak values, to lie outside the obervables’ eigenspectra, improv-
ing signal-to-noise ratios [32–39]. Nonreal KD quasiprobabilities can endow weak values

10 The Kirkwood–Dirac distribution has been called by several names. Its real part is often called the Terletsky–
Margenau–Hill distribution [24–27].
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with imaginary components, which encode a measurement’s disturbance of a quantum state
[40–43]. Measuring a KD distribution allows for the tomographic reconstruction of a quantum
state [44–48]. In quantum chaos, quantum-information scrambling (the spreading of a local
perturbation via many-body entanglement) is quantified with an out-of-time-ordered correlator
[49, 50]. This correlator drops to classically forbidden values when underlying KD quasiprob-
abilities assume negative or nonreal values [38, 51–54]. In quantum metrology, postselection
can increase the average amount of information obtained about an unknown parameter per
end-of-trial measurement [55–58]. If the postselection is designed such that a conditional
KD distribution contains negative elements, the information-per-final-measurement rate can
be nonclassically large. KD distributions have been used in quantum thermodynamics [51,
59, 60]; nonreal KD quasiprobabilities enable an engine to be unexplainable by any classical
(noncontextual) theory [60]. Finally, the KD distribution has applications to the foundations
of quantum mechanics [12, 41, 61–69]. For example, a KD distribution is related to histories’
weights in the consistent-histories interpretation of quantum mechanics [12, 61, 62]. Further-
more, nonclassicality of the KD distribution can coincide with the violation of a Leggett–Garg
inequality [66, 70].

Despite the KD distribution’s versatility, many of its properties have not been detailed. A
natural first guess is that, if all the operators involved fail to commute with each other pairwise,
then the KD distribution contains negative or nonreal quasiprobabilities [54]. This, we show
below, is a misconception. Furthermore, little is known about bounds on how much nonclas-
sicality a KD distribution can have11. An improved understanding of the KD distribution’s
properties can facilitate the design of diverse experiments that harness the distribution’s
nonclassicality for quantum advantage.

In this article, we prove sufficient conditions for the KD distribution to have nonclassi-
cally negative and/or nonreal values (theorem 1) or, equivalently, necessary conditions for
the KD distribution to be classical. We identify cases in which the KD distribution is clas-
sical despite pairwise noncommutation between the quantum state and the observables in the
distribution’s definition. Our results extend to scenarios where the KD distribution is coarse-
grained to account for degeneracies in experiments. Reference [53] introduced a measure for
the KD distribution’s nonclassicality. We complement this measure with new ones, suited to
more-diverse operational tasks. We also upper-bound these nonclassicality measures (theorem
2). Conditioning the KD distribution, à la Bayes’ theorem, allows KD nonclassicality to exceed
the bounds, amplifying quantum advantages in certain experiments. Finally, we quantify how
decoherence reduces KD distributions’ nonclassicalities.

2. Kirkwood–Dirac distribution

We assume that all operators operate on a Hilbert space with finite dimension d. Consider
two orthonormal bases, {|ai〉} and {| fi〉}. Throughout this article, we regard these bases as
eigenbases of observables Â =

∑
iai|ai〉〈ai| and F̂ =

∑
i fi| fi〉〈 fi|. In terms of these bases, a

state ρ̂ can be represented by the KD distribution

{
qρ̂

i, j

}
≡ {〈 fj|ai〉〈ai|ρ̂| fj〉} =

{
Tr
(
Π̂ f

j Π̂
a
i ρ̂
)}

, (1)

11 Bounds have been derived on eigenvalues of products of Hermitian operators [71]. Such bounds are of mathematical
and fundamental interest. In contrast, we bound KD quasiprobabilities, motivated by the KD distribution’s operational
significances, as well as by foundational interests.
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where Π̂a
i ≡ |ai〉〈ai|, etc. The distribution can be used to calculate expectation values and

measurement-outcome probabilities. {qρ̂
i, j} satisfies some of Kolmogorov’s axioms for joint

probability distributions [14]:∑
i, j

qρ̂
i, j = 1,

∑
j

qρ̂
i, j = p(ai|ρ̂), and

∑
i

qρ̂
i, j = p( fj|ρ̂),

where p(ai|ρ̂) and p( fj|ρ̂) denote conditional probabilities. qρ̂
i, j can be nonclassical by assum-

ing negative or nonreal values. Nonclassical values are not directly observable but cause
effects inferable from sequential measurements [38, 72]. If {|ai〉} = {| fj〉}, the KD dis-
tribution reduces to a classical probability distribution: {qρ̂

i, j} = {〈 fj|ai〉〈ai|ρ̂| fj〉δ f j,ai} =

{Tr(Π̂a
i ρ̂)δ f j,ai}. In classical physics, all observables commute, and every KD distribution

equals a probability distribution.
Certain physical processes [38, 51–54, 57] motivate the extension of the KD distribution

from 2 to k bases, e.g. eigenbases of k observables Â(1), . . . , Â(k). The extended KD distribution
is {

qρ̂
i1,...,ik

}
≡
{

Tr
(
Π̂a(k)

ik
. . . Π̂a(1)

i1
ρ̂
)}

. (2)

A KD distribution’s elements serve as the coefficients in an operator expansion of ρ̂:

ρ̂ =
∑

i1,...,ik

|a(1)
i1
〉〈a(k)

ik
|

〈a(k)
ik
|a(1)

i1
〉

qρ̂
i1,...,ik

=
∑

i, j

|a(1)
i 〉〈a(k)

j |
〈a(k)

j |a(1)
i 〉

qρ̂
i, j. (3)

We define qρ̂
i, j/〈a

(k)
j |a(1)

i 〉 ≡ 〈a(1)
i |ρ̂|a(k)

j 〉 if 〈a(k)
j |a(1)

i 〉 = 0.
We have shown how to represent a state in terms of eigenbases of Hermitian operators,

including measured observables and time-evolution generators. In terms of this representation,
physical quantities can be expressed. Assuming that KD distributions are real and non-negative,
one can bound the values attainable in classical settings. This strategy has been applied to weak
values12 [38, 73], information scrambling [53, 54], and the Fisher information [57]. Nonclas-
sicality in the KD distribution is a stricter condition than noncommutation, we show, as the
former requires the latter but not vice versa.

3. Requirement for nonclassical quasiprobabilities

If any two of Â, F̂, and ρ̂ commute, they share at least one eigenbasis. When Â and F̂ commute
and a shared eigenbasis serves as the {|ai〉} and the {| fj〉} in equation (1), the KD distribution
equals a classical probability distribution. When ρ̂ and Â (F̂) commute, it suffices for clas-
sicality that a shared eigenbasis serves as {|ai〉} ({| fj〉}). If [ρ̂, Â], [ρ̂, F̂], [Â, F̂] �= 0, the KD
distribution may assume negative or nonreal values [71]. However, noncommutation does not
suffice for KD nonclassicality, as shown in examples 1 and 2 in appendix A. To find a suf-
ficient condition for nonclassicality (equivalently, a necessary condition for classicality), we
focus first on (i) pure states ρ̂ and (ii) nondegenerate Â and F̂. We then address degenerate
observables and mixed states.

Let us define four real numbers that reflect incompatibility properties of ρ̂, Â, and F̂. In
the pure case, ρ̂ = |Ψ〉〈Ψ|. Let VA ≡ {|ai〉} and VF ≡ {| fj〉} denote the eigenbases of the

12 Observables’ expectation values equal KD-weighted weak values [64].
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nondegenerate Â and F̂, respectively. These eigenbases are unique up to phases. Define as
NA (NF) the number of VA (VF) vectors whose overlaps with |Ψ〉 are nonzero:

NA ≡ ‖{|ai〉 ∈ VA : 〈ai|Ψ〉 �= 0}‖, and (4)

NF ≡ ‖{| fj〉 ∈ VF : 〈 fj|Ψ〉 �= 0}‖. (5)

‖ · ‖ denotes a set’s cardinality. We denote by n‖ (n̄‖) the number of |ai〉 that are (i) parallel to
vectors | fj〉 and (ii) nonorthogonal (orthogonal) to |Ψ〉.
Theorem 1. (Sufficient conditions for KD nonclassicality). Suppose that ρ̂ is pure
and that Â and F̂ are nondegenerate. If 2NA + 2NF > 3d + n‖ − 3n̄‖, then the KD distribution
contains negative or nonreal values.

We prove the theorem by the contrapositive: assuming a classical KD distribution, we
deduce constraints on the unitary matrix with entries 〈ai|fj〉. These constraints imply a con-
dition on NA, NF, d, n‖, and n̄‖ that is necessary for classicality of the KD distribution.
A violation of this condition suffices for KD nonclassicality. The full proof appears in
appendix B.

Theorem 1 implies a simple condition sufficient for KD nonclassicality:

Corollary 1. If the KD distribution lacks zero-valued quasiprobabilities, {qρ̂
i, j} is

nonclassical.

Proof. If all qρ̂
i, j �= 0, then |ai〉 ∦ | fj〉,13 and 〈ai|Ψ〉, 〈 fj|Ψ〉 �= 0, for all i, j. So n‖ = n̄‖ = 0,

and NA = NF = d, satisfying the nonclassicality condition of theorem 1. �
Three more extensions of theorem 1 merit mention. First, if Â and F̂ are degenerate, one

can construct KD distributions by coarse-graining over the degeneracies. These coarse-grained
distributions can signal nonclassical physics in quantum chaos [38, 52–54] and metrology [57].
In appendix D, we prove sufficient conditions for these distributions to be nonclassical.

Second, every KD distribution {qρ̂
i1,ik

} follows from marginalizing an extended distribu-

tion {qρ̂
i1,...,ik

} (equation (2)) over the indices i2, . . . , ik−1 [38, 51–54, 57]. If any marginalized

{qρ̂
iα,iβ

} satisfies the nonclassicality condition in theorem 1, every fine-graining {qρ̂
i1,...,ik

} is
nonclassical.

Third, we prove further properties of the real and imaginary components of qρ̂
i, j in appendix

C. These properties can be used, e.g. to tailor states ρ̂ to achieve nonclassical results in exper-
iments that involve observables Â and F̂. A similar strategy is being applied in a photonic
experiment to observe how KD negativity benefits parameter estimation [74].

4. Nonclassicality measures

How much nonclassicality can a KD distribution have? We review an existing nonclassicality
measure, define measures suited to more operational tasks, and upper-bound the measures.

Every KD distribution’s elements sum to unity. Negative and nonreal entries are nonclassi-
cal. González Alonso et al thus quantified [53] KD distributions’ nonclassicality, in the context
of scrambling, with

N
(
{qρ̂

i1,...,ik
}
)
≡ −1 +

∑
i1,...,ik

|qρ̂
i1,...,ik

|. (6)

13 Since VA and VF are orthonormal sets, if some |ai〉 ‖ | fj〉, then some other |ai′ 〉⊥| fj〉. By equation (1), qρ̂

i′ , j
= 0
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N ({qρ̂
i1,...,ik

}) = 0 when {qρ̂
i1,...,ik

} is real and non-negative. We upper-bound the measure
generally in terms of the Hilbert-space dimensionality, d.

Theorem 2. (Maximum KD nonclassicality). The maximum nonclassicality N ({qρ̂
i1,...,ik

})

of any KD distribution {qρ̂
i1,...,ik

} is

max
ρ̂,Â(1),...,Â(k)

{
N
(
{qρ̂

i1,...,ik
}
)}

= d(k−1)/2 − 1. (7)

The maximum is achieved if and only if two conditions are met simultaneously: (i) The oper-
ators Â(i) and Â(i+1) have mutually unbiased eigenbases14 (MUBs) for each i = 1, . . . , k − 1.
(ii) ρ̂ = |Ψ〉〈Ψ|, where |Ψ〉 has equal overlaps with all the eigenvectors of Â(1) and Â(k).

The proof of theorem 2 appears in appendix E.
At least one triplet of MUBs exists for every d � 2 [75]. We can therefore construct a{

q|Ψ〉〈Ψ|
i1,...,ik

}
that maximizes N : let |Ψ〉 be an element of the triplet’s first MUB. Let |a(k)

ik
〉 be

the ithk element of the second (third) MUB if k is even (odd).
The measure (6) is useful in the context of chaos, where negative and nonreal KD quasiprob-

abilities signal scrambling [54]. But negative and nonreal values do not always enjoy equal
footing: only negative KD quasiprobabilities enable a metrologist to garner a nonclassically
high Fisher information [57]. In contrast, nonreal KD quasiprobabilities lie behind weak
values’ imaginary components, which encode measurement disturbance [32, 42]. We therefore
quantify the aggregated negativity and nonreality, respectively:

NR−
({

qρ̂
i1,...,ik

})
:= − 1 +

∑
i1,...,ik

| R
(

qρ̂
i1,...,ik

)
|, and (8)

N�
({

qρ̂
i1,...,ik

})
:=
∑

i1,...,ik

∣∣∣∣ �(qρ̂
i1,...,ik

) ∣∣∣∣. (9)

NR− � N by definition, and 0 � N I < N + 1. If all the nonclassical qρ̂
i1,...,ik

are real

negative numbers,NR−
= N . Given the importance ofNR−

to quantum metrology and weak-
value amplification, a crucial question is: when can NR−

= max{N}? A complete answer
requires further advances in the field of MUBs. Nevertheless, for every d in which a triplet
of real MUBs exists15, max{NR−} = max{N}. The number of real MUBs in a space of a
general dimensionality d is unknown. The smallest space with a triplet of real MUBs has d = 4
[76]. We construct an example in which d = 4 and max{NR−} = max{N} in example 3 of
appendix A. In d = 2, the Pauli bases form a triplet of MUBs. When k = 2 and the Pauli bases
are used to maximize N , all nonclassicality manifests as nonreal quasiprobabilities without
negative real components (appendix A, example 4).

5. Amplifying nonclassicality via postselection

As aforementioned, negative KD quasiprobabilities underlie quantum advantages in weak-
value amplification and postselected quantum metrology. The reason is, the protocols

14 Bases A ≡ {|α j〉} and B ≡ {|βk〉} are mutually unbiased if preparing any A element and measuring B yields a
totally unpredictable outcome: |〈α j|βk〉| = 1/

√
d for all j, k.

15 For our purposes, a real MUB is an MUB whose vectors can be expressed, relative to a fixed basis, as columns of
real numbers. Appendix F reconciles this definition with the conventional definition.
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involve postselection. Classical postselection, or conditioning, obeys Bayes’ theorem,
p(a|b) = p(b|a)p(a)/p(b). The KD distribution satisfies an analog of Bayes’ theorem [26, 38,
44]: suppose that a state represented by {qρ̂

i1,...,ik
} undergoes a measurement {F̂k, 1̂ − F̂k},

where F̂k ≡
∑

ik : | f ik 〉∈Fk
| f ik〉〈 f ik | for some set Fk. Conditioned on the outcome’s correspond-

ing to F̂k, the KD quasiprobabilities are∑
ik : | f ik

〉∈Fk

qρ̂
i1,...,ik

p(Fk|ρ̂)
, (10)

where

p(Fk|ρ̂) ≡
∑

i1,...,ik−1,
ik : | f ik

〉∈Fk

qρ̂
i1,...,ik

= Tr(F̂kρ̂). (11)

The form of qρ̂
i1,...,ik

(equation (1)) implies that, for every unconditioned KD distribution,

0 � |qρ̂
i1,...,ik

| � 1. If {qρ̂
i1,...,ik

} lacks nonclassical values, also the conditional KD quasiproba-

bilities (10) lie between 0 and 1. However, if qρ̂
i1,...,ik

contains negative values, the numerator in
equation (10) can have a greater magnitude than the denominator. The conditional quasiprob-
ability can be made arbitrarily large [57]. So can, consequently, the corresponding N , NR−

,
and N I . This KD nonclassicality can lead to metrological capabilities infinitely greater than
those achievable classically [sometimes at a cost of low postselection probabilities p(Fk|ρ̂)]
[28, 29, 57].

6. Mixed states

We have focused on pure-state KD distributions, but every experiment involves decoherence.
How does decoherence affect KD nonclassicality? Let ρ̂ =

∑
n pnρ̂n, where ρ̂n ≡ |Ψn〉〈Ψn| and

pn denotes a probability. ρ̂ can be represented by the KD distribution{qρ̂
i, j} = {

∑
n pnqρ̂n

i, j}. By

convexity, the nonclassical qρ̂
i, j have magnitudes no greater than the magnitudes of the non-

classical components of the most nonclassical {qρ̂n
i, j}: mixing dilutes the nonclassicality. For

example, the KD distributions for the pure states ρ̂+ = |+〉〈+| and ρ̂− = |−〉〈−| with respect
to the bases {|a〉} = {|0〉, |1〉} and {|f〉} = { cos(π/3)|0〉+ sin(π/3)|1〉,− sin(π/3)|0〉+
cos(π/3)|1〉} are nonclassical. But the distribution for ρ̂ = 2

3 ρ̂+ + 1
3 ρ̂− is classical16. Deco-

herence obscures the incompatible eigenbases’ nonclassicality.
In another example, consider depolarizing a pure state ρ̂0: ρ̂′ ≡ pρ̂0 + (1 − p)1̂/d. The KD

distribution of ρ̂′ has elements

qρ̂′
i, j = pqρ̂0

i, j +
1 − p

d
|〈 f j|ai〉|2. (12)

If p is small enough (e.g. if p = 0), the depolarizing channel eliminates the KD distribution’s
negative components. By the triangle inequality, N ({qρ̂′

i, j}) � pN ({qρ̂0
i, j}), and NR−

({qρ̂′
i, j}) �

pNR−
({qρ̂0

i, j}). Each imaginary component is reduced by a factor of p: N I({qρ̂′
i, j}) =

pN I({qρ̂0
i, j}). N I({qρ̂′

i, j}) can resist decoherence more than NR−
({qρ̂′

i, j}): only when the state

16 |+〉 (|−〉) and |0〉 (|1〉) denote the +1 (−1) eigenvectors of the Pauli-x and Pauli-z operators, respectively.
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decoheres fully (p = 0) do all the imaginary components disappear. The negative components
disappear when the decoherence surpasses a finite threshold.

7. Discussion

Benefits of using the KD distribution include the ability to prove classical bounds on physical
quantities by assuming real, non-negativedistributions. The key to applying the KD distribution
fruitfully is to construct the distribution operationally. The bases and their ordering should
reflect properties of the experiment (e.g. [38, 54, 57, 60, 74]). Similarly, experimental context
dictates when extending the KD distribution facilitates analyses [38, 51–54, 57].

Our work provides a methodology for calculating whether an input state and subsequent
operations may generate nonclassical physics in a range of experiments. Furthermore, our
work provides a mathematical toolkit for constructing quantum-enhanced experiments. We
have shown that noncommutation does not suffice for achieving nonclassical KD distributions
and associated quantum advantages. Instead, KD negativity and nonreality emerge as sharper
nonclassicality criteria than noncommutation for diverse tasks.
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Appendix A. Example KD distributions

Example 1. (Classical KD distribution for pairwise-noncommuting Â, F̂, and pure ρ̂). Con-
sider a two-qubit system. As before, |+〉 (|−〉) and |0〉 (|1〉) are the +1 (−1) eigenvectors
of the Pauli-x and Pauli-z operators, respectively. We choose Â and F̂ such that {|ai〉} =
{|0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉} and {| f j〉} = {|0〉|+〉, |0〉|−〉, |1〉|0〉, |1〉|1〉}. For example, if
each observable has the eigenvalues −2, −1, 1, and 2,

Â →

⎛
⎜⎜⎝
−2 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 2

⎞
⎟⎟⎠ , and F̂ →

⎛
⎜⎜⎜⎜⎜⎜⎝

−3
2

−1
2

0 0

−1
2

−3
2

0 0

0 0 1 0
0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A1)
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Table 1. The KD distribution of example 1.

| fj〉
|ai〉

|0〉|0〉 |0〉|1〉 |1〉|0〉 |1〉|1〉

|0〉|+〉 0 0 0 0
|0〉|−〉 0 0 0 0
|1〉|0〉 0 0 1

2 0
|1〉|1〉 0 0 0 1

2

Table 2. The KD distribution of example 2.

| fj〉
|ai〉

|0〉 |1〉 |2〉 |3〉
|0〉+|1〉√

2
1
4

1
4 0 0

|0〉−|1〉√
2

0 0 0 0
|2〉+|3〉√

2
0 0 1

4
1
4

|2〉−|3〉√
2

0 0 0 0

We set ρ̂ = |Ψ〉〈Ψ|, where |Ψ〉 = |1〉|+〉:

ρ̂→

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0

0 0
1
2

1
2

0 0
1
2

1
2

⎞
⎟⎟⎟⎟⎟⎠ . (A2)

Â, F̂ and ρ̂ fail to commute pairwise: [Â, F̂], [ρ̂, Â], [ρ̂, F̂] �= 0. However, the KD distribution
(table 1) is real and non-negative.

Since this KD distribution is classical, theorem 1 implies that 2NA + 2NF � 3d + n‖ − 3n̄‖.
Indeed, NA = NF = 2, d = 4, n‖ = 2, and n̄‖ = 0; so the inequality reads 8 � 14.

Example 2. (Classical KD distribution that saturates inequality (B2)). Consider a four-
dimensional Hilbert space with an orthonormal basis {|0〉, |1〉, |2〉, |3〉}. Suppose that Â and F̂
have eigenbases {|ai〉} = {|0〉, |1〉, |2〉, |3〉} and {| f j〉} = { |0〉+|1〉√

2
, |0〉−|1〉√

2
, |2〉+|3〉√

2
, |2〉−|3〉√

2
}. Let

ρ̂ = |Ψ〉〈Ψ|, where |Ψ〉 = |0〉+|1〉+|2〉+|3〉
2 . The KD distribution, presented in table 2, is real and

non-negative.
In this example, NA = 4, NF = 2, d = 4, and n‖ = n̄‖ = 0. Hence, 2NA + 2NF = 12 =

3d + n‖ − 3n̄‖: the classical inequality 2NA + 2NF � 3d + n‖ − 3n̄‖ obtained from theorem
1 is saturated.

Example 3. (Real nonclassical KD distribution that achieves the maximum in theorem
2.) Suppose that Â and F̂ act on a two-qubit Hilbert space and have eigenbases {|ai〉} =
{|0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉} and {| fj〉} = {|+〉|+〉, |−〉|+〉, |+〉|−〉, |−〉|−〉}. {|ai〉} and
{| f j〉} form a pair of MUBs. Let ρ̂ = |Ψ〉〈Ψ|, where |Ψ〉 = (|0〉|0〉+ |0〉|1〉+ |1〉|0〉 −
|1〉|1〉)/2. The overlaps |〈Ψ|ai〉| = |〈Ψ| fj〉| = |〈ai| fj〉| = 1

2 for all i, j. The resulting KD dis-
tribution is given in table 3.

9
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Table 3. The KD distribution of example 3.

| f j〉
|ai〉

|0〉|0〉 |0〉|1〉 |1〉|0〉 |1〉|1〉

|+〉|+〉 1
8

1
8

1
8 − 1

8

|−〉|+〉 1
8

1
8 − 1

8
1
8

|+〉|−〉 1
8 − 1

8
1
8

1
8

|−〉|−〉 − 1
8

1
8

1
8

1
8

Table 4. The KD distribution of example 4.

| fj〉
|ai〉

|0〉 |1〉

|+〉 (1 − i)/4 (1 + i)/4
|−〉 (1 + i)/4 (1 − i)/4

This KD distribution is nonclassical. Furthermore, N
({

q|Ψ〉〈Ψ|
i, j

})
= 1 saturates the

inequality N
({

q|Ψ〉〈Ψ|
i1,...,ik

})
� d(k−1)/2 − 1 in theorem 2, for k = 2 and d = 4. As the KD

distribution is real, it saturates also NR− � N .

Example 4. (Nonclassical KD distribution for Pauli operators.) Let Â = σ̂z, F̂ = σ̂x , and
ρ̂ = |Ψ〉〈Ψ|, where (|0〉+ i|1〉)/

√
2 (the +1 eigenstate of σ̂y). The resulting KD distribution

is given in table 4.

This KD distribution is nonclassical. Furthermore, N
({

q|Ψ〉〈Ψ|
i, j

})
=

√
2 − 1 saturates the

inequalityN
({

q|Ψ〉〈Ψ|
i, j

})
� d(k−1)/2 − 1 in theorem 2, for k = 2 and d = 2. The KD distribu-

tion is non-negative, so NR−
({

q|Ψ〉〈Ψ|
i, j

})
= 0. All the nonclassicality lies in the imaginary

components of
{

q|Ψ〉〈Ψ|
i, j

}
: N I

({
q|Ψ〉〈Ψ|

i, j

})
= 1. The results below table 4 hold for every ver-

sion of the k = 2 KD distribution, where {|ai〉} is one Pauli basis, {| fj〉} is another Pauli basis,
and |Ψ〉 is an eigenstate of the third Pauli operator. This conclusion can be checked directly.

Example 5. (Nonclassical KD distribution that violates 2NA + 2NF > 3d + n‖ − 3n̄‖.) Satis-
fying 2NA + 2NF > 3d + n‖ − 3n̄‖ suffices to guarantee a nonclassical KD distribution. But it
is not necessary, as we demonstrate here. Consider a two-qubit system. We choose Â and F̂ such
that {|ai〉} = {|0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉} and {| fj〉} = {|0〉|+〉, |0〉|−〉, |1〉|+〉, |1〉|−〉}. We
set ρ̂ = |Ψ〉〈Ψ|, where |Ψ〉 =

(
|0〉|0〉+ 2|0〉|1〉

)
/
√

5. These choices imply NA = NF = 2,
d = 4, and n‖ = n̄‖ = 0. Hence the inequality above is violated: 8 ≯ 12. Nonetheless, the KD
distribution is nonclassical (table 5).

10
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Table 5. The KD distribution of example 5.

| f j〉
|ai〉

|0〉|0〉 |0〉|1〉 |1〉|0〉 |1〉|1〉

|0〉|+〉 3
10

3
5 0 0

|0〉|−〉 − 1
10

1
5 0 0

|1〉|+〉 0 0 0 0
|1〉|−〉 0 0 0 0

Figure 1. Unitary matrix with entries Ûi, j = 〈ai| fj〉. The dashed vertical lines divide the
columns into ‘left’, ‘middle’, and ‘right’ sets. The dashed horizontal line divides the
rows into ‘top’ and ‘bottom’ sets. The vectors |ai〉 and | fj〉 are ordered such that any
nonreal or negative Ûi, j appear in the bottom rows or rightmost columns.

Appendix B. Proof of theorem 1

For convenience, we first assume that no |ai〉 and | fj〉 are parallel: n‖ = n̄‖ = 0. Then, we
generalize.

Assume that the KD distribution is classical: qρ̂
i, j ∈ R�0 for all i, j. Without changing

the quasiprobabilities or the observables, we can redefine the vectors through |ai〉 �→ eiαi |ai〉
and | fj〉 �→ eiφ j| fj〉. We choose the αi,φ j ∈ R such that 〈ai|Ψ〉〈Ψ| fj〉 ∈ R�0. By assumption,
〈 fj|ai〉〈ai|Ψ〉〈Ψ| fj〉 ∈ R�0. Hence, for each i and j, 〈ai| fj〉 ∈ R�0, or 〈ai|Ψ〉 = 0, or 〈Ψ| f j〉 = 0.
Let Û denote the unitary operator that rotates VA into VF. Û is represented, relative to VF, by
the matrix with elements Ûi, j = 〈ai| fj〉. d − NA vectors in VA, and d − NF vectors in VF, are
orthogonal to |Ψ〉. Hence, at most d − NA rows and d − NF columns of Û contain negative or
nonreal values.

Let us order VA and VF so that the top left-hand NA-by-NF block contains only non-negative
real entries (figure 1). The top NA entries of each column j form a ‘top vector’ ft

j ∈ RNA
�0. The

bottom d − NA entries of column j form a ‘bottom vector’ fb
j ∈ Cd−NA . We label columns 1 to

k ‘left’, columns k + 1 to NF ‘middle’, and columns NF + 1 to d ‘right’.
For j = 1, 2, . . . , NF, all elements of each ft

j are non-negative reals. Hence (ft
	)
�ft

m � 0 for

all 	, m ∈ {1, . . . , NF}. Therefore, for the columns of Û to be orthogonal, (fb
	 )

†fb
m � 0 must hold

11
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for all 	, m ∈ {1, . . . , NF} for which 	 �= m. This inner-product constraint implies the following
lemma.

Lemma B.1. At most 2(d − NA) of the NF left and middle bottom vectors are nonzero.

Proof of Lemma B.1. Here, we bound the maximum number of nonzero bottom vec-
tors whose pairwise products are � 0. Let S = {s j} denote a set of nonzero vectors in Cn

whose pairwise inner products are � 0. We use an orthonormal basis in terms of which
s1 → (s1, 0, . . . , 0)� and s1 > 0. Every other vector s j ∈ S\{s1} is represented by a column
with first element � 0. Hence, for these other s j to have inner products� 0, the vectors formed
from their last n − 1 entries must all have inner products � 0. At most one of these shorter
vectors can be the null vector 0. So all the others are nonzero vectors in Cn−1 whose pair-
wise inner products are � 0. The relevant vectors space’s dimensionality has decreased to
n − 1. Proceeding from n to n − 1, we have ‘lost’ at most two vectors, s1 → (s1, 0, . . . , 0)� and
s2 → (−s2, 0, . . . , 0)�, where s1, s2 > 0. By induction, S can have at most 2n vectors. In the
proof of theorem 1, n = d − NA. Consequently,� 2(d − NA) of the NF left and middle bottom
vectors are nonzero. �

Lemma B.1 ensures that if k denotes the number of nonzero elements of {fb
1 , . . . , fb

NF
}, then

k � 2(d − NA). (B1)

Let us order the columns of Û so that the k nonzero bottom vectors occupy columns 1 to k,
while fb

k+1 = fb
k+2 = . . . = fb

NF
= 0. (Figure 1).

Columns 1 to k (the left columns) are linearly independent. Therefore, the collection of
columns contains nonzero entries in � k rows. Up to d − NA of those rows can be in the bottom
vectors (which contain exactly d − NA rows). The left top vectors make up the difference,
having nonzero entries in � k − (d − NA) rows. The middle top vectors must contain only
0s in these rows, since they are orthogonal to the left top vectors17. Let us order the rows
of Û such that the middle top vectors’ uppermost � k − (d − NA) entries are 0s (figure 1).
Only the middle top vectors’ lower � NA − [k − (d − NA)] = d − k entries can be nonzero.
By assumption, no |ai〉 is parallel to any | fj〉. So each middle top vector has� 2 nonzero entries
〈ai| fj〉. But the middle top vectors are mutually orthogonal, and all their entries � 0. So no two
middle top vectors can have nonzero elements in the same row. Therefore, 2(NF − k) � d − k.
We bound k with inequality (B1) and rearrange:

2NA + 2NF � 3d. (B2)

Finally, we extend 2NF + 2NA � 3d (inequality (B2)) to scenarios in which n̄‖ �= 0 or
n‖ �= 0, completing the proof of theorem 1. We first remove any pairs (|ai〉, | fj〉) of parallel
vectors from VA and VF. Consider the subspace H′ spanned by the remaining basis vectors. Let
d′ ≡ dim(H′). Define N′

A as the number of |ai〉 that have nonzero overlaps with |Ψ〉, and define
N′

F analogously. Denote by |Ψ′〉 the projection of |Ψ〉 ontoH′. Inequality (B2) can be rederived
for this reduced subspace: 2N′

F + 2N′
A � 3d′. (If |Ψ′〉 = 0, then N′

A = N′
F = 0, so the inequal-

ity still holds.) Substituting in from N′
A + n‖ = NA, N′

F + n‖ = NF, and d′ + n‖ + n̄‖ = d leads
to 2NF + 2NA � 3d + n‖ − 3n̄‖.

We derived this inequality assuming a classical KD distribution. A violation of the inequality
implies nonclassicality. �

17 The middle columns are orthogonal to the left columns. The middle bottom columns’ being 0s forces the middle
top vectors to be orthogonal to the left top vectors.
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Appendix C. Properties of the imaginary and real components of the KD
distribution

Consider an experiment that involves eigenbases {|ai〉} and {| fj〉} or, equivalently, nondegen-
erate operators Â and F̂. One might want to construct a KD distribution {qρ̂

i, j} that has, or
that lacks, KD nonclassicality by picking a suitable ρ̂. Furthermore, one might want specific
quasiprobabilities qρ̂

i, j to have negative or nonreal nonclassicality. We provide useful results for
tailoring ρ̂.

As in part of the main text, we assume that ρ̂ is pure: ρ̂ = |Ψ〉〈Ψ|. The imaginary part of
qρ̂

i, j decomposes as

I

[
qρ̂

i, j

]
=

1
2i

[
qρ̂

i, j −
(

qρ̂
i, j

)∗]
=

1
2

Tr
[
Ĥi, jρ̂

]
, (C1)

where Ĥi, j ≡ iΠ̂a
i Π̂

f
j − iΠ̂ f

j Π̂
a
i . If |〈ai| fj〉| �= 0, 1, then −iĤi, j is the antisymmetric product of

two noncommuting rank-1 projectors. Under this condition, Ĥi, j also has two eigenvalues,
h(±)

i, j = ±|〈ai| f j〉|
√

1 − |〈ai| f j〉|2 �= 0, with respective eigenvectors

|h(±)
i, j 〉 =

1√
2

[(
∓1 − i

|〈ai| fj〉|√
1 − |〈ai| fj〉|2

)
eiArg(〈ai| fj〉)|ai〉+ i

1√
1 − |〈ai| fj〉|2

| f j〉
]
. (C2)

The real part of qρ̂
i, j can be written as

R

[
qρ̂

i, j

]
=

1
2

Tr
[
qρ̂

i, j +
(

qρ̂
i, j

)∗]
≡ 1

2
Tr
[
Ĝi, jρ̂

]
, (C3)

where Ĝi, j ≡ Π̂a
i Π̂

f
j + Π̂ f

j Π̂
a
i . If |〈ai| fj〉| �= 0, then Ĝi, j is the symmetric product of two non-

commuting rank-1 projectors. Under this condition, Ĝi, j also has two eigenvalues, g(±)
i, j =

|〈ai| fj〉|(|〈ai| fj〉| ± 1) �= 0, with corresponding eigenvectors

|g(±)
i, j 〉 =

1√
2

(
| fj〉 ± eiArg(〈ai| fj〉)|ai〉

)
. (C4)

g(+)
i, j and g(−)

i, j are positive and negative, respectively. This result is consistent with the appendix
in reference [12]. There, Hartle demonstrates the existence of a state for a which a KD
distribution is nonclassical, if the two projectors fail to commute.

Given the eigenvalues h(±)
i, j and g(±)

i, j , and the eigenvectors |h(±)
i, j 〉 and |g(±)

i, j 〉, one can tailor |Ψ〉
such that a quasiprobability qρ̂

i, j has a negative real component, or an imaginary component, of
a certain magnitude.

Appendix D. Extension to restricted information, or coarse-grained KD
distributions

Â can be degenerate, as can F̂. Regardless, Â eigendecomposes as Â =
∑

lAlÂl, where Âl ≡∑
i : |ai〉∈Al

|ai〉〈ai| and Al is the eigensubspace associated with the eigenvalue Al. Similarly,

F̂ =
∑

kFkF̂k, where F̂k ≡
∑

j : | fj〉∈Fk
| f j〉〈 f j| and Fk is eigensubspace associated with the

eigenvalue Fk. If any F̂k (Âl) has rank > 1, F̂k (Âl) has nonequivalent eigenbases. Conse-
quently, {qρ̂

i, j} is generally not unique for a fixed ρ̂. This degeneracy problem arises in, e.g.

13
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studies of quantum scrambling: Â and F̂ manifest as local observables of a many-body system
and so are degenerate [38, 52–54]. We therefore define a coarse-grained KD quasiprobability
distribution by marginalizing {qρ̂

i, j} over the degeneracies:

{
Qρ̂

l,k

}
:=

⎧⎪⎪⎨
⎪⎪⎩
∑

i : |ai〉∈Al
j : | fj〉∈Fk

〈 fj|ai〉〈ai|ρ̂| fj〉

⎫⎪⎪⎬
⎪⎪⎭ =

{
Tr
(

F̂kÂlρ̂
)}

. (D1)

The projectors F̂k and Âl are unique. So, for a given ρ̂, the quasiprobabilities Qρ̂
l,k are unique.

We now prove a theorem analogous to theorem 1 for the coarse-grained distribution, pro-
viding a necessary condition for {Qρ̂

l,k} to be classical when ρ̂ = |Ψ〉〈Ψ| is pure. In analogy

with equation (4), we define as ÑA the number of Â eigenspaces onto which |Ψ〉 has nonzero
projections. In analogy with equation (5), we define ÑF similarly:

ÑA ≡ ‖{l : Âl|Ψ〉 �= 0}‖, and (D2)

ÑF ≡ ‖{k : F̂k|Ψ〉 �= 0}‖. (D3)

In analogy with previous definitions, we denote by ñ‖ (respectively, ˜̄n‖) the number of Âl|Ψ〉
that are (i) parallel to some F̂k|Ψ〉 and (ii) nonorthogonal (respectively, orthogonal) to |Ψ〉.
This background informs the following theorem, which resembles theorem 1.

Theorem 3. (Sufficient conditions for coarse-grained KD nonclassicality). Sup-
pose that ρ̂ = |Ψ〉〈Ψ| is pure. If 2ÑF + 2ÑA > 3d + ñ‖ − 3˜̄n‖, the coarse-grained KD distri-
bution is nonclassical.

Proof. As in the proof of theorem 1, we begin by assuming that the KD distribution is
classical: Qρ̂

l,k � 0 for all l, k. We assume that ñ‖ = ˜̄n‖ = 0; then, we generalize.

Define the ÑA nonzero projections |aΨ
l 〉 ≡ Âl|Ψ〉/‖Âl|Ψ〉‖ and the ÑF nonzero projec-

tions | f Ψk 〉 ≡ F̂k|Ψ〉/‖F̂k|Ψ〉‖. By appending vectors to the sets {|aΨ
l 〉} and {| f Ψk 〉}, we

can form orthonormal bases BA and BF. By the sets’ definitions, |Ψ〉 ∈ span{|aΨ
l 〉}, and

|Ψ〉 ∈ span {| f Ψk 〉}. Therefore, the appended vectors are orthogonal to |Ψ〉. Since Qρ̂
l,k =

Tr
(

F̂kÂlρ̂
)
= 〈Ψ|F̂kÂl|Ψ〉 = 〈 f Ψk |aΨ

l 〉 × ‖Âl|Ψ〉‖ × ‖F̂k|Ψ〉‖, the condition Qρ̂
l,k � 0 implies

that 〈 f Ψk |aΨ
l 〉 � 0. Therefore, any nonclassical quasiprobabilities contain vectors appended to

the bases BA and BF. But the appended basis elements are orthogonal to |Ψ〉 and so appear
only in zero-valued quasiprobabilities. Therefore, BA and BF define a classical non-coarse-
grained KD distribution for ρ̂. Let this non-coarse-grained KD distribution’s NA, NF, n‖ and
n̄‖ be defined as in the proof of theorem 1. By theorem 1, 2NA + 2NF � 3d + n‖ − 3n̄‖. Since
we extended the bases with vectors orthogonal to |Ψ〉, NA = ÑA, NF = ÑF, and n‖ = ñ‖ = 0.
Therefore, 2ÑA + 2ÑF � 3d − n̄‖ � 3d. The generalization to ñ‖ �= 0 or ˜̄n‖ �= 0 proceeds as in
appendix ??. Therefore, every classical coarse-grained KD distribution satisfies 2ÑF + 2ÑA �
3d + ñ‖ − 3˜̄n‖. Violating this inequality suffices for the coarse-grained distribution to be
nonclassical. �

An analog of corollary 1 follows.

Corollary 2. Suppose that at least one of Â and F̂ is nondegenerate, while the other is
not completely degenerate. If the KD distribution lacks zero-valued quasiprobabilities, Qρ̂

l,k is
nonclassical.
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Proof. Suppose that all the Qρ̂
l,k are nonzero. Without loss of generality, assume that Â is

nondegenerate. F̂ is not completely degenerate, so its eigendecomposition contains at least
two distinct projectors, F̂1 and F̂2. Since the Qρ̂

l,k are nonzero, F̂1|Ψ〉 and F̂2|Ψ〉 are nonzero,
by equation (D1). Therefore, there exist at least two vectors, | f Ψ1 〉 and | f Ψ2 〉, as defined in the
proof of theorem 3.

The rest of the proof is a proof by contradiction. Suppose that {Qρ̂
l,k} is classical. If it lacks

zero-valued quasiprobabilities, then 〈 f Ψk |al〉 ∈ R>0 for every l and k. By the F̂ eigenspaces’
orthogonality,

0 = 〈 f Ψ1 | f Ψ2 〉 =
∑

l

〈 f Ψ1 |al〉〈al| f Ψ2 〉 > 0. (D4)

The final inequality follows because 〈 f Ψ1 |al〉, 〈al| f Ψ2 〉 > 0 for each l. Implying the contradic-
tion 0 > 0, the assumption of the distribution’s classicality is false. �

Let us briefly discuss the case, consistent with the assumptions of corollary 2, in which F̂
is degenerate and Â is not (or vice versa). Coarse-graining over one index suffices to define a
unique KD distribution distribution:

{
Qρ̂

i,k

}
:=

⎧⎨
⎩

∑
j : | f j〉∈Fk

〈 f j|ai〉〈ai|ρ̂| f j〉

⎫⎬
⎭ =

{
Tr
(
F̂k|ai〉〈ai|ρ̂

)}
. (D5)

Such a distribution has been used, for example, in postselected quantum metrology. In reference
[57], F̂ = 0 ×

∑
j : | fj〉∈F0

| f j〉〈 f j|+ 1 ×
∑

j′ : | f ′j 〉∈F1
| f ′j 〉〈 f ′j | is an observable whose measured

value determines whether a quantum state should be discarded or funnelled to further process-
ing. If the coarse-grained KD distribution contains negative values, a metrological protocol
may provide a nonclassical advantage. Further properties of Qρ̂

i,k are proved below.

D.1. Properties of the imaginary and real components of the coarse-grained KD distribution

Here, we extend the results of appendix C to {Qρ̂
i,k}. Suppose that ρ̂ is pure: ρ̂ = |Ψ〉〈Ψ|. The

imaginary part of Qρ̂
i,k decomposes as

I

[
Qρ̂

i,k

]
=

1
2i

[
Qρ̂

i,k −
(

Qρ̂
i,k

)∗]
=

1
2

Tr
[
R̂i,kρ̂

]
, (D6)

where R̂i,k ≡ iΠ̂a
i F̂k − iF̂kΠ̂

a
i . If pa

F ≡ Tr
(
Π̂a

i F̂k

)
�= 0, 1, then R̂i,k has two nonzero eigenval-

ues, r(±)
i,k = ±

√
pa

F −
(

pa
F

)2
. The eigenvectors are

|r(±)
i,k 〉 = 1√

2

[(
∓ 1√

pa
F

+ i
1√

1 − pa
F

)
F̂k|ai〉 − i

1√
1 − pa

F

|ai〉
]
. (D7)

Similarly, the real part of Qρ̂
i,k can be expressed as

R

[
Qρ̂

i,k

]
=

1
2

[
Qρ̂

i,k +
(

Qρ̂
i,k

)∗]
=

1
2

Tr
[
Ŝi,kρ̂
]

, (D8)
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where Ŝi,k ≡ Π̂a
i F̂k + F̂kΠ̂

a
i . If pa

F �= 0, 1, then Ŝi,k has two eigenvalues, s(±)
i,k = pa

F ±
√

pa
F. The

eigenvectors are

|s(±)
i,k 〉 = 1√

2

[
|ai〉 ±

1√
pa

F

F̂k|ai〉
]
. (D9)

Appendix E. Proof of theorem 2

Here, we upper-bound N
(
{qρ̂

i1,...,ik
}
)

, proving theorem 2. First, we restrict our attention pure

states ρ̂ = |Ψ〉〈Ψ|. We prove that N
(
{q|Ψ〉〈Ψ|

i1,...,ik
}
)

maximizes when each of its inner products

has magnitude 1/
√

d. Thus, if N
(
{q|Ψ〉〈Ψ|

i1,...,ik
}
)

is maximized, then |〈a(1)
i1
|Ψ〉| = |〈a(k)

ik
|Ψ〉| = 1√

d

for all i1, ik. Every ρ̂ equals a convex sum of pure states ρ̂n. By the triangle inequality,

N
(
{qρ̂

i1,...,ik
}
)

is upper-bounded by a convex sum of the N
(
{qρ̂n

i1,...,ik
}
)

. Therefore, at any

maximum of N
(
{qρ̂

i1,...,ik
}
)

, ρ̂ is a linear combination of pure states, each of which maxi-

mizes N
(
{qρ̂

i1,...,ik
}
)

. We finish the proof by showing that no such mixed state maximizes

N
(
{qρ̂

i1,...,ik
}
)

. Hence, only pure states that are unbiased with respect to Â1 and Âk eigenbases,

as described above, maximize N
(
{qρ̂

i1,...,ik
}
)

.

Our proof requires the following lemma:

Lemma 1. Let {|i〉}d
i=1 be an orthonormal basis for a d-dimensional Hilbert space H. The

unit vector |ψ〉 ∈ H satisfies
∑d

i=1|〈i|ψ〉| �
√

d. The bound is saturated if and only if |〈i|ψ〉| =
1√
d

for every i.

Proof. By Jensen’s inequality,(
d∑

i=1

|〈i|ψ〉|
)2

� d
d∑

i=1

|〈i|ψ〉|2 = d. (E1)

Comparing the first and third expressions, we conclude that

d∑
i=1

|〈i|ψ〉| �
√

d. (E2)

Jensen’s inequality is saturated if and only if the terms in the first sum in (E1) equal each other,
as can be inferred from the geometric proof of Jensen’s inequality. Consequently, inequality
(E2) is saturated if and only if |〈i|ψ〉| = 1/

√
d. �

To upper-bound N
(
{qρ̂

i1,...,ik
}
)

, we assume that ρ = |Ψ〉〈Ψ| is pure. By equations (2)

and (6),

N
({

q|Ψ〉〈Ψ|
i1,...,ik

})
= −1 +

∑
i1,...,ik

|〈a(1)
i1
|a(2)

i2
〉 × · · · × 〈a(k)

ik
|Ψ〉〈Ψ|a(1)

i1
〉|, (E3)

where {|a(n)
in 〉}

d
in=1 is an eigenbasis of Hermitian operator A(n). (To simplify notation in this

proof, we have labeled operators differently than in equation (2): here, the 〈a(k)
ik
| acts on |Ψ〉.)
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We now show that the rhs of equation (E3) maximizes when the magnitude of all the inner

products in N
(
{q|Ψ〉〈Ψ|

i1,...,ik
}
)

equal each other.

For a fixed value of i1,∑
i2,...,ik

|〈a(1)
i1
|a(2)

i2
〉 × · · · × 〈a(k)

ik
|Ψ〉〈Ψ|a(1)

i1
〉|

=
∑

i2

⎛
⎝|〈a(1)

i1
|a(2)

i2
〉| ×

∑
i3,...,ik

|〈a(2)
i2
|a(3)

i3
〉 × · · · × 〈a(k)

ik
|Ψ〉〈Ψ|a(1)

i1
〉|

⎞
⎠ (E4)

�
∑

i2

|〈a(1)
i1
|a(2)

i2
〉| × max

i′2

∑
i3,...,ik

|〈a(2)
i′2
|a(3)

i3
〉 × · · · × 〈a(k)

ik
|Ψ〉〈Ψ|a(1)

i1
〉| (E5)

�
√

d × max
i′2

∑
i3,...,ik

|〈a(2)
i′2
|a(3)

i3
〉 × · · · × 〈a(k)

ik
|Ψ〉〈Ψ|a(1)

i1
〉|. (E6)

Inequality (E5) follows because, if x j and y j are non-negative real numbers, then
∑

j x jy j �∑
j x j × max j ′y j ′ . Inequality (E6) follows from lemma 1. Proceeding from the left-hand side

of equation (E4) to the rhs of (E6), we (i) reduce the number of summed indices by 1 and (ii)
acquire a factor of

√
d. Let us iterate this step k − 3 more times:∑

i2,...,ik

|〈a(1)
i1
|a(2)

i2
〉 × · · · × 〈a(k)

ik
|Ψ〉〈Ψ|a(1)

i1
〉|

� (
√

d)2 × max
i′3

∑
i4,...,ik

|〈a(3)
i′3
|a(4)

i4
〉 × · · · × 〈a(k)

ik
|Ψ〉〈Ψ|a(1)

i1
〉| (E7)

� . . . (E8)

� (
√

d)k−2 × max
i′k−1

∑
ik

|〈a(k−1)
i′k−1

|a(k)
ik
〉〈a(k)

ik
|Ψ〉〈Ψ|a(1)

i1
〉|. (E9)

Summing over i1 yields∑
i1,...,ik

|〈a(1)
i1
|a(2)

i2
〉 × · · · × 〈a(k)

ik
|Ψ〉〈Ψ|a(1)

i1
〉|

� (
√

d)k−2 × max
i′k−1

∑
i1,ik

|〈a(k−1)
i′k−1

|aik〉〈a
(k)
ik
|Ψ〉〈Ψ|a(1)

i1
〉| (E10)

= d
k
2−1
∑

i1

|〈Ψ|a(1)
i1
〉| × max

i′k−1

∑
ik

|〈a(k−1)
i′k−1

|a(k)
ik
〉〈a(k)

ik
|Ψ〉| (E11)

� d
k−1

2 × max
i′k−1

∑
ik

|〈a(k−1)
i′k−1

|a(k)
ik
〉| × |〈a(k)

ik
|Ψ〉| (E12)

� d
k−1

2 × max
i′k−1

√∑
ik

|〈a(k−1)
i′k−1

|a(k)
ik
〉|2 ×

∑
i′k

|〈a(k)
i′k
|Ψ〉|2 (E13)

= d
1
2 (k−1). (E14)

Inequality (E12) follows from lemma 1. Inequality (E13) follows from the
Cauchy–Schwarz inequality: for vectors �u,�v ∈ Rn, denote the inner product by
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(�u,�v) =
∑d

j=1u jv j. The Cauchy–Schwarz inequality implies that (�u,�v)2 � (�u,�u)(�v,�v).

Let �u =
(
|〈a(k−1)

i′k−1
|a(k)

1 〉|, |〈a(k−1)
i′k−1

|a(k)
2 〉|, . . . , |〈a(k−1)

i′k−1
|a(k)

d 〉|
)

and �v =
(
|〈a(k)

1 |Ψ〉|, |〈a(k)
2 |Ψ〉|, . . . ,

|〈a(k)
d |Ψ〉

)
. Square-rooting each side of the Cauchy–Schwarz inequality yields inequality

(E13). Therefore,

N
(
{qρ̂

i1,...,ik
}
)
� d(k−1)/2 − 1. (E15)

It is easy to see that, if all the inner products in {qρ̂
i1,...,ik

} have magnitudes 1/
√

d, inequality

(E15) is saturated. This criterion is satisfied when two conditions hold simultaneously: (i) Â(i)

and Â(i+1) have MUBs for each i = 1, 2, . . . , k − 1; and (ii) |〈a(1)
i1
|Ψ〉| = |〈a(k)

ik
|Ψ〉| = 1√

d
for all

i1, ik.

These two conditions are not only sufficient, but also necessary for N
(
{qρ̂

i1,...,ik
}
)

to be

maximized: inequalities (E5)–(E9) are all saturated only if (i) holds. Inequalities (E12) and
(E13) are saturated only if (ii) holds.

Therefore, if a (possibly mixed) state ρ̂maximizesN
(
{qρ̂

i1,...,ik
}
)

, then ρ̂ =
∑

n pn|Ψn〉〈Ψn|,

where each |Ψn〉 maximizes N
(
{q|Ψn〉〈Ψn|

i1,...,ik
}
)

. By the triangle inequality, |〈a(k)
ik
|ρ̂|a(1)

i1
〉| �∑

n pn|〈a(k)
ik
|Ψn〉〈Ψn|a(1)

i1
〉|, with equality only if arg

(
〈a(k)

ik
|Ψn〉〈Ψn|a(1)

i1
〉
)

is independent of n.

So, if ρ̂ maximizes N
(
{qρ̂

i1,...,ik
}
)

, then, for each i1 and ik, arg
(
〈a(k)

ik
|Ψn〉〈Ψn|a(1)

i1
〉
)

is inde-

pendent of n. Thus, since |〈a(k)
ik
|Ψn〉〈Ψn|a(1)

i1
〉| = 1

d for all n, i1, and ik, 〈a(k)
ik
|Ψn〉〈Ψn|a(1)

i1
〉 is

independent of n for every i1, ik. Therefore, |Ψn〉〈Ψn| is independent of n, and so ρ is a pure
state, as claimed. �

Appendix F. Real MUBs used to maximize NR−

A KD distribution achieves its maximal negativity when NR−
= maxN . Such a distribution

can be constructed from a triplet of real MUBs. For our purposes, a real MUB is an MUB
whose vectors can be represented, relative to some basis, as columns of real numbers. We now
reconcile that definition with the definition in the literature.

Real MUBs have been defined as MUBs for Hilbert spaces over Rm, for m = 2, 3, . . . [76].
In contrast, we focus on Hilbert spaces over Cm. But real MUBs can be imported into complex
vector spaces, as follows.

Let {B1, B2, . . . , Bn} denote a set of real MUBs for Rm, and let B j = {|b( j)
1 〉, . . . , |b( j)

m 〉}.
Each vector in Rm exists in Cm, so each |b( j)

k 〉 exists in Cm. Consider any vector |v〉 that exists
in Cm but not in Rm. |v〉 equals a linear combination, weighted with complex coefficients, of
Rm vectors. Every Rm vector equals a linear combination of the |b( j)

k 〉. Therefore, |v〉 ∈ Cm

equals a linear combination of the |b( j)
k 〉. So each B j is a basis for Cm, so {B1, . . . , Bn} forms a

set of MUBs in Cm.
Let B denote any basis for Rm. Relative to B, every |b( j)

k 〉 can be represented as a column of
real numbers, by the definition of Rm. B forms a basis also for Cm, by the preceding paragraph.
Therefore, every |b( j)

k 〉 can be represented, relative to a basis B for Cm, as a column of real
numbers.
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