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A positron is equivalent to an electron traveling backward through time. Casting transmon super-
conducting qubits as akin to electrons, we simulate a positron with a transmon subject to particular
resonant and off-resonant drives. We call positron-like transmons “antiqubits.” An antiqubit’s ef-
fective gyromagnetic ratio equals the negative of a qubit’s. This fact enables us to time-invert a
unitary implemented on a transmon by its environment. We apply this platform-specific unitary
inversion, with qubit–antiqubit entanglement, to achieve a quantum advantage in phase estima-
tion: consider measuring the strength of a field that points in an unknown direction. An entangled
qubit–antiqubit sensor offers the greatest possible sensitivity (amount of Fisher information), per
qubit, per application of the field. We prove this result theoretically and observe it experimentally.
This work shows how antimatter, whether real or simulated, can enable platform-specific unitary
inversion and benefit quantum information processing.

One can regard a positron as an electron moving back-
ward in time. This insight has impacted fundamen-
tal physics, as championed by Wheeler, Feynman, and
Stückelberg [1–4]. Can one apply the insight for prac-
tical benefit? One practical challenge, common across
quantum computation and metrology, is unitary inver-
sion. Consider a quantum system subject to an external
field that effects the unitary operation Uα := e−iαH . (We
set ℏ = 1.) Often, one wishes to implement U†

α. Such uni-
tary inversion can help one detect quantum-information
scrambling [5–7], superpose time evolutions [8], imple-
ment higher-order quantum transformations (e.g., evolu-
tions of quantum channels) [9, 10], measure out-of-time-
order correlators [11, 12], and support quantum singular-
value transformations [13, 14].

Conventional unitary inversion can operate imprecisely
and requires substantial resources. In a näıve approach,
one infers the form of Uα from process tomography [15–
18]. Then, one constructs a setup intended to apply
U†
α. Alternatively, one can implement U†

α with a unitary-
reversal algorithm [9, 19]. Such an algorithm costs many
Uα applications, which serve as resources in quantum
computing and metrology: let d denote the system-of-
interest Hilbert space’s dimensionality. The algorithms
require O(d2) applications of Uα per U†

α implementation,
like tomography.

We propose to invert unitaries by applying the positron
insight above. The electron’s gyromagnetic ratio, γ,
helps determine the electron’s magnetic moment and
hence the electron’s coupling to an external field and
hence α. The positron has a gyromagnetic ratio −γ. If
exposed to the same field as an electron, a positron un-
dergoes e−i(−α)H = U†

α. Hence one can effectively invert
a unitary, and so effectively reverse time, by exchanging
matter with antimatter.

We experimentally simulate an exchange of a transmon
with antimatter. The strategy relies on resonant and off-
resonant drives, which negate the effective gyromagnetic
ratio of the transmon’s pseudospin. This negation in-
verts the unitary to which a magnetic field subjects the
transmon, regardless of the field’s direction. We call this
process platform-specific unitary inversion. Also, we call
positron-like transmons antiqubits.

We apply platform-specific unitary inversion and en-
tanglement to achieve a quantum advantage in sensing.
Consider a field pointing in an arbitrary direction, which
could be unknown. One measures the field strength α
in quantum phase estimation, a task prevalent in quan-
tum algorithms and metrology [20–29]. To accomplish
this task, we entangle a qubit transmon with an an-
tiqubit. We call the entangled pair synthetic positron-
ium, after the positronium atom formed from a bound-
together electron and positron. The field applies Uα to
the qubit and, via platform-specific unitary inversion,
U†
α to the antiqubit. This inversion boosts the Fisher

information (FI) obtainable, or sensitivity achievable,
about the field. We quantify the resources required using
the space–time volume vst, defined as (number of trans-
mons used)×(number of sequential applications of the
unitary) [30, 31]. Our strategy achieves the greatest pos-
sible amount of FI per two units of space–time volume, 4.
[We fix the space–time volume to be vst = 2 throughout
this proof-of-principle work for simplicity. However, an
extension of our strategy achieves the maximum possi-
ble Fisher information, regardless of the space–time vol-
ume (Sec. VI)]. Experimentally, we obtain an FI of 3.02
per two units of space–time volume. In contrast, two
entangled qubits can achieve 1; and a separable qubit–
antiqubit state, 4/3, on average over trials. Hence entan-
glement and platform-specific unitary inversion, realized
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with antimatter simulation, enable a quantum advantage
in metrology. Furthermore, we prove, that entanglement
and effective unitary inversion enable the unique strategy
that achieves the optimal FI per two units of space–time
volume.

The rest of this paper is organized as follows. Section I
provides background about phase estimation. Section II
theoretically introduces postronium metrology facilitated
by platform-specific unitary inversion. In Sec. III, we de-
scribe the experimental setup. Section IV explains how
we perform platform-specific unitary inversion. The ex-
perimental results follow in Sec. V. Section VI outlines
opportunities established by this work.

I. BACKGROUND: PHASE ESTIMATION

This section introduces a basic task in quantum
metrology, phase estimation. Below, we specify the task,
then review common metrics for evaluating success: the
FI and quantum Fisher information (QFI). We illustrate
with a qubit example and three approaches to it. We
compare the approaches using a metric that reflects not
only the information gained metrologically, but also the
resources spent: the space–time volume.

The following task exemplifies phase estimation. Let
Uα denote an arbitrary unitary parameterized by α ∈ R.
To estimate α, we proceed as in Fig. 1(a): we prepare a
probe in |ψ⟩. The unitary maps |ψ⟩ to Uα |ψ⟩ =: |ψα⟩.
We measure some basis {|j⟩} of the probe. Outcome j
occurs with a probability Pj = |⟨j|ψα⟩|2.

The FI Iα quantifies the probability distribution’s sen-
sitivity to changes in α: Iα :=

∑
j (∂αPj)

2/Pj . Maximiz-

ing the FI over measurements yields the QFI, Iα [32, 33]:

Iα ≤ Iα = 4
(
⟨∂αψα|∂αψα⟩ − |⟨ψα|∂αψα⟩|2

)
. (1)

The QFI, too, obeys an upper bound: suppose that
Uα = e−iαH . Denote by ∆H the difference between
the generator’s greatest eigenvalue, Emax, and the least,
Emin: ∆H := Emax − Emin. The QFI obeys

Iα ≤ max
|ψ⟩

{
⟨ψ|H2 |ψ⟩ − ⟨ψ|H |ψ⟩2

}
= (∆H)2 . (2)

The QFI saturates this bound if |ψ⟩ is an equal-weight
superposition of an eigenvalue-Emax eigenstate and an
eigenvalue-Emin eigenstate.

We illustrate with a qubit subject to an external field.
Denote by n̂ = nxx̂ + nyŷ + nzẑ the field’s direction;
and, by σ = Xx̂+Y ŷ+Zẑ ≡ σxx̂+σyŷ+σzẑ, a vector
of the Pauli operators. For future reference, we denote
by |a±⟩ the σa eigenstate associated with the eigenvalue
±1. Also, we define |0⟩ := |z+⟩ and |1⟩ := |z−⟩. The
unitary Uα = e−iαn̂·σ/2 effects a rotation whose angle α
we wish to estimate. Since the generator H = n̂ · σ/2,
the QFI is (∆H)2 = 1.

We now present three strategies for inferring about α.
First, suppose we know the rotation axis n̂. We can

achieve the QFI by preparing even-weight superpositions
of the H eigenstates.

Second, suppose we do not know n̂ and can use only
one qubit per trial. We lack information about three pa-
rameters: α and the two angles that specify n̂. In con-
trast, only two parameters specify a pure qubit state [34].
Due to this discrepancy, we cannot necessarily estimate
α from copies of just one qubit state [35]: if we are un-
lucky, the Bloch vector points along ±n̂. Consequently,
the field cannot rotate the qubit, which acquires no in-
formation about the field. The optimal strategy is to
prepare probes in X eigenstates in one batch of trials, Y
eigenstates in another batch, and Z eigenstates in a third
batch. On average over trials, this strategy achieves the
QFI, 2/3 < 1 [35].

Third, suppose that we can use two qubits per trial.
Agnostic phase estimation leverages entanglement to
boost the QFI, which is again achievable [35]. Figure 1(b)
illustrates the protocol: we prepare a probe qubit and an
ancilla qubit in the singlet |Ψ−⟩ := 1√

2
(|01⟩−|10⟩). Then,

Uα acts on the probe. We measure the positive-operator-
valued measure (POVM) [36] {|Ψ−⟩⟨Ψ−|,1−|Ψ−⟩ ⟨Ψ−|}.
The greater the α, the more Uα perturbs the joint state
away from |Ψ−⟩, and the greater our probability of ob-
serving the |Ψ−⟩⟨Ψ−| outcome. This strategy yields an
FI equal to the QFI, 1. Agnostic sensing requires no
knowledge of n̂ and requires only one Uα application per
trial—but requires two qubits per trial.

To compare metrological schemes comprehensively, we
need a resource measure that incorporates not only FI,
but also resource costs. Different schemes may require
different numbers of unitary applications, and different
numbers of particles, per trial. Hence we invoke Feyn-
man’s space–time volume, vst [30]. It draws inspira-
tion from classical complexity theory: the total resource
tracked there is the product of memory and runtime [31].
In quantum computing, an algorithm’s space–time vol-
ume equals the number of qubits times the number of
circuit layers. Here, the space–time volume equals the
number of qubits used, times the number of sequential
Uα applications, per trial [37]. We compare protocols’
FIs per vst = 2 units of space–time volume, as some pro-
tocols require two qubits each.

Let us apply this metric to phase estimation in the ab-
sence of knowledge about n̂. One qubit can yield an aver-
age FI, per two units of space–time volume, of Iα = 4/3.
Agnostic sensing yields only 1. Incorporating qubits into
the resource cost, we lower the agnostic-sensing efficacy
below the single-qubit strategy’s.

We show next how to outperform both these metrologi-
cal strategies with positronium metrology. It achieves an
Iα of 4 per two units of space-time volume, saturating
the theoretical limit on this metric [38]. Only effective
unitary inversion, combined with a singlet, can achieve
this FI rate [38]. Our approach relies on entanglement
and on platform-specific unitary inversion applied to a
qubit–antiqubit pair.
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FIG. 1. Quantum phase estimation, including
platform-specific unitary inversion implemented with
synthetic positronium. (a) Circuit diagram for basic phase
estimation. Time runs vertically. One prepares a probe in a
state |ψ⟩, evolves it under a unitary Uα, and measures the
probe. (b) Agnostic phase estimation employs a two-qubit
entangled state to simulate a closed timelike curve. The ∪
represents singlet preparation; and the ∩, a measurement
of whether the state remains a singlet. (c) Read from bot-
tom to top, this diagram represents electron–positron scat-
tering that produces photons. One can view the positron as
an electron moving backward through time, as suggested by
the arrows’ orientations. We leverage this insight to perform
platform-specific unitary inversion and positronium metrol-
ogy. (d) Positronium metrology involves a qubit probe that
undergoes Uα and an antiqubit ancilla that, due to platform-
specific unitary inversion, undergoes U†

α (leftmost diagram).
Imagine sliding the U†

α box leftward along the wire (central
diagram). When passing through the ∪, the U†

α is inverted.
Hence positronium metrology is equivalent to implementing
U2

α on the probe (rightmost diagram). Doubling the num-
ber of Uαs applied, relative to agnostic sensing, doubles the
amount of FI achievable per two units of space-time volume.

II. THEORY OF POSITRONIUM METROLOGY

Using positronium metrology, one can achieve the op-
timal FI about α per two units of space–time volume,
without knowing n̂. The scheme leverages two distinct
processes that are mathematically equivalent to time re-
versals (two effective time reversals). We introduce the
two sequentially, then assess the scheme’s efficacy.

The first effective time reversal results from entangle-
ment manipulation and enables agnostic phase estima-
tion. The previous section reviewed agnostic phase es-
timation [35], depicted in Fig. 1(b). We can read that
figure in two ways. Traversed from bottom to top, the
figure shows (i) a probe qubit and ancilla qubit prepared
in a singlet, (ii) the probe undergoing a unitary, and (iii)
a measurement of whether the qubits remain in a singlet.
Alternatively, we can interpret the figure as one qubit’s
worldline. The worldline forms a loop, or closed time-
like curve [39–42]: the qubit reverses temporal direction,
relative to the laboratory rest frame, at the ∪ and ∩.

(The qubit also undergoes a transformation, discussed
below, at each turning point.) These symbols represent
entanglement manipulations in the first reading of the
figure. The entanglement manipulations—and the effec-
tive time reversals—enable agnostic phase estimation as
follows. When performing agnostic phase estimation, we
do not know the field direction n̂. Hence we do not know
the optimal state in which to prepare the probe at the
beginning of the protocol. We effectively teleport that
state backward in time (from the diagram’s top to its
bottom), via the entanglement manipulations—by effec-
tively reversing time.
During agnostic phase estimation, the field acts only

on the probe. Can we boost the FI by acting the field on
the ancilla? Doing so näıvely would transform the singlet
identically: |Ψ−⟩ 7→ (Uα ⊗ Uα) |Ψ−⟩ = |Ψ−⟩. The sec-
ond Uα undoes the first one’s effect, due to the singlet’s
rotational invariance under tensor products of identical
unitaries.
Instead, we propose, we should subject the ancilla to

U†
α. We do so via the second effective time reversal:

we convert the ancilla into an antiqubit by negating its
effective gyromagnetic ratio. This negation negates α,
subjecting the (antiqubit) ancilla to e−i(−α)n̂·σ/2 = U†

α.
This strategy, we call positronium metrology. Figure 1(c)
illustrates the fundamental insight that we leverage: in-
terchanging matter with antimatter effectively reverses
time.
Figure 1(d) illustrates how positronium metrology

boosts the FI. The leftmost diagram shows the qubit
probe undergoing Uα and the antiqubit ancilla undergo-
ing U†

α. Consider sliding the U†
α box downward along the

wire, as in the central diagram. When the box passes
through the ∪, it undergoes a universal NOT (for the
central diagram to represent the same physics as the left-
most) [35]: U†

α = eiαn̂·σ/2 7→ e−iαn̂·σ/2 = Uα . Imple-
menting positronium metrology, therefore, is equivalent
to implementing U2

α on the probe [rightmost diagram in
Fig. 1(d)]. However, truly implementing U2

α costs two
units of space–time volume, whereas our scheme costs
one unit. The effective U2

α doubles the FI gleaned about
α: positronium metrology achieves Iα = 4 at the cost of
vst = 2. This FI equals the corresponding QFI, which
is the greatest possible QFI achievable with any strategy
that consumes ≤ 2 units of space–time volume, even if
one knows n̂ [38].

III. EXPERIMENTAL SETUP

Our experiment features three transmons: a qubit q
that acts as ordinary matter, an antiqubit q̄, and a cou-
pler c. (We avoid the phrases transmon qubit and super-
conducting qubit, reserving the word qubit for q.) The fol-
lowing frequencies specify the gaps between transmons’
ground and first-excited energy levels at zero flux (in the
absence of drives): ωq/(2π) = 4.167 GHz, ωq̄/(2π) =
4.274 GHz, and ωc/(2π) = 5.250 GHz. We modulate ωc
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to activate parametric interactions between q and q̄.
We prepare the singlet via the following steps. Each

transmon begins in |z+⟩. We subject q to a π-pulse,

preparing it in |z−⟩. Next, we effect a
√
iSWAP gate, by

implementing the resonant parametric interaction for 104
ns. Finally, we correct the antiqubit’s phase [38]. This
process prepares the singlet with a fidelity of 97 %.

Similarly, we measure {|Ψ−⟩⟨Ψ−|,1−|Ψ−⟩⟨Ψ−|} in two

steps. First, we perform a
√
iSWAP . Then, we measure

each qubit’s computational basis. We achieve single-
qubit measurement fidelities of ≈ 95 %, for which we
correct throughout this work.

In the absence of extraneous fields (fields other than
the quantization field), we set each transmon’s Hamil-
tonian ∝ Z, in accordance with convention. Resonant
drives effect controlled rotations about the x- and y-axes.
Therefore, transmon j ∈ {q, q̄} has a Hamiltonian ex-
pressible in terms of effective-magnetic-field components
Ωx, Ωy and δj :

Hj = ΩxX +ΩyY + δjZ. (3)

IV. PLATFORM-SPECIFIC UNITARY
INVERSION

Figure 2(a) sketches transmon-specific unitary inver-
sion. The qubit and antiqubit pass through the same
magnetic field (green arrows). The qubit undergoes Uα.
The antiqubit undergoes U†

α, having an equal-magnitude,
opposite-sign effective gyromagnetic ratio. We effect this
gyromagnetic ratio via two control techniques, depicted
in Fig. 2(b): (i) We apply a Z gate before subjecting q̄
to the Hamiltonian (3), then apply a Z gate afterward.
The gates effectively invert the magnetic field’s x- and
y-components. (ii) We apply a single-frequency drive to
both transmons. It induces an alternating-current (AC)
Stark shift of δq to the qubit and a shift δq̄ = −δq to
the antiqubit. This strategy effectively inverts the z-
component of the magnetic field experienced by q̄. We
now elaborate on these techniques sequentially.
Z gates effectively invert the magnetic field’s x- and

y-components. To show how, we leverage the Taylor ex-
pansion of Uα = e−iαn̂·σ/2 and the Pauli operators’ com-
mutation relations:

Ze−iαn̂·σ/2 Z = e−iαn̂·(ZσZ)/2 (4)

= e−iα(−nxX−nyY+nzZ)/2 . (5)

Experimentally, we implement a Z gate by physically ro-
tating the qubit through an angle π about the z-axis.
Two on-resonance microwave pulses effect each Z gate
[38].

Figure 2(c) demonstrates this strategy’s efficacy. We
constructed the figure from the following two protocols,
the first applied to q and the second applied to q̄: in each
of many trials, we prepared q in |+y⟩. We set Ωx/(2π)

to 13.2 MHz for a time τ . In each of many other tri-
als, to simulate antimatter, we performed Z gates before
and after the Ωx pulse. Figure 2(c) shows the transmons’
⟨Z⟩s plotted against time. The square blue markers rep-
resent qubit data; and the circular green markers, an-
tiqubit data. q̄ rotates oppositely q, as expected. The
blue diamonds and green triangles follow from analogous
experiments that begin with |+x⟩ and involve rotations
about the y-axis.
We have shown how to effectively invert a field’s x- and

y- components, using Z gates implemented with resonant
drives. Using an off-resonant microwave drive, we can
effectively invert a field’s z-component. We drive both
transmons simultaneously. They begin with different en-
ergy gaps and so experience different AC Stark shifts: the
qubit’s gap changes by an amount δq; and the antiqubit’s,
by δq̄. Figure 2(e) shows δq and δq̄ versus drive frequency.
At the magic frequency 4.177 GHz, δq̄ = −δq; the qubit
and antiqubit undergo opposite z-rotations. Figure 2(f)
shows δq and δq̄ versus drive amplitude. This figure con-
firms that one drive frequency induces equal-magnitude,
opposite-sign AC Stark shifts on the transmons.

V. POSITRONIUM-METROLOGY
EXPERIMENT

Figure 3 details the phase-estimation experiment en-
hanced by synthetic positronium and platform-specific
unitary inversion. Below, we detail the protocol. Then,
we analyze the possible measurement outcomes’ probabil-
ities. From the probabilities, we calculate the FI per two
units of space–time volume. We then compare positron-
ium metrology with a protocol that features q and q̄ but
no entanglement.
The circuit diagram 3(a) shows our positronium-

metrology protocol’s three steps: first, we prepare q and
q̄ in a singlet. Second, we implement Uα on q and U†

α

on q̄, using platform-specific unitary inversion. Third,
we measure the POVM {|Ψ−⟩⟨Ψ−|,1 − |Ψ−⟩⟨Ψ−|}. Let
P (|Ψ−⟩) denote the probability of obtaining the outcome
associated with the first projector.
Figure 3(b) shows P (|Ψ−⟩) versus α. Different colors

and marker shapes correspond to different rotation axes
n̂ = x̂, ŷ, ẑ. Regardless of n̂, P (|Ψ−⟩) ≈ cos(2α). The
2 comes from the equivalence between (i) positronium
metrology and (ii) evolving the qubit under U2

α (Sec. II).
Two practicalities limit the P (|Ψ−⟩) curves’ contrasts
and so the experimentally inferable FI. One practicality
consists of the state-preparation and measurement fideli-
ties. The other practicality affects just the n̂ = ẑ data:
if n̂ = ẑ, we apply an AC Stark tone, which is not far
off resonance. It therefore rotates the transmons slightly
about the x- and y-axes [38].
We can calculate the experimentally achievable FI

from Fig. 3(b). First, we fit a curve to each experimental
dataset. Then, we identify the α value at which the slope
maximizes. Figure 3(e) shows the resulting FI. Different



5

t

a

b

c e

fd

t

Drive freq. (GHz)

(M
H

z)

(ns)

(M
H

z)

(MHz)

FIG. 2. Platform-specific unitary inversion. (a) Qubit and antiqubit transmons. An external field (green arrows) effects the
unitary Uα on q and U†

α on q̄. (b) We simulate antimatter by applying two techniques. q undergoes Uα due to a pseudomagnetic
field with components Ωx, Ωy, and δq. The antiqubit undergoes U†

α. The platform-specific unitary inversion results from Z
gates and from the field components Ωx, Ωy , and δq̄ . (c) The Z gates effectively invert the external-field component Ωx. To
check, we prepare |y+⟩, then apply the field for a time τ . In half the trials, we apply a Z gate before the field application
and another Z afterward. (d) Same as (c), except with Ωy and |x+⟩. (e) An off-resonant drive generates the external field’s
z-component. The drive induces an AC Stark shift of δq on the qubit and δq̄ on the antiqubit. Dashed lines represent theoretical
predictions. Points represent frequency shifts measured with Ramsey measurements. At 4.177 GHz (solid gray line), δq = −δq̄.
The qubit has a transition frequency ωq/(2π); and the antiqubit, one of ωq̄/(2π). (f) AC Stark shifts versus drive amplitude
Ωs [38].

abscissas correspond to rotations about the x-, y-, and
z-axes. On average over the axes, the FI is 3.03 ± 0.07
per two units of phase-space volume. The uncertainty,
δ = 0.07, arises from curve fitting. It equals the geo-

metric mean, δ = 1
3

√
δ2x + δ2y + δ2z , of the standard de-

viations δx,y,z in the curve parameters associated with
different rotational axes.

To highlight positronium metrology’s entanglement
advantage, we compare our strategy with phase esti-
mation that leverages an unentangled qubit–antiqubit
sensor. The competitor strategy provides the great-
est possible FI achievable if, as in positronium sens-
ing, all trials must begin with identical state prepara-
tions [43]. Figure 3(c) shows the circuit diagram: we
prepare q in |x+⟩ and q̄ in |z+⟩. Then, Uα evolves
q, while U†

α evolves q̄. Finally, we measure the qubit’s
{|x+⟩⟨x+|, |x−⟩⟨x−|}, obtaining the first outcome with a
probability P (|x+⟩). We simultaneously measure the an-
tiqubit’s {|z+⟩⟨z+|, |z−⟩⟨z−|}, associated with an analo-
gous P (|z+⟩).
We analyze the competitor protocol as follows. For

technical reasons, we assume that the metrologist learns
n̂ after the experiment [44]. This assumption gives
the competitor an advantage over positronium sensing.
Nevertheless, we will see, positronium sensing achieves
a greater Iα/vst. Figure 3(d) shows the P (|x+⟩) and
P (|z+⟩) versus α for each of three rotation axes. If q
rotates about the y- or z-axis, the qubit’s P (|x+⟩) ≈
cos(α). If q rotates about the x-axis, the qubit’s

P (|x+⟩) = 1. This probability’s α-independence im-
plies that we can learn nothing about the field. Anal-
ogous statements concern the antiqubit. Figure 3(e) re-
ports the inferable FI per two units of space–time vol-
ume. The strategy achieves an FI of Iα = 1.3 ± 0.1, at
a cost of vst = 2, on average over the three axes, slightly
below the theoretically predicted 4/3 [35] and below the
positronium-sensing value, 3.03±0.07. The positronium-
sensing and entanglement-free strategies outperform ag-
nostic sensing performed without antimatter [35]. In the
latter experiment, a qubit sensor, entangled with a qubit
ancilla, achieved an FI of Iα = 0.72±0.03, while expend-
ing vst = 2.

VI. OUTLOOK

We have applied a fundamental-physics insight to
unitary inversion and quantum sensing. According to
decades-old particle physics, one can view positrons as
electrons traveling backward in time. We exhibited a
positron-like transmon whose effective gyromagnetic ra-
tio equals the negative of an ordinary transmon qubit’s.
This negativity enabled us to invert a unitary imple-
mented by a magnetic field. We leveraged this platform-
specific unitary inversion, with entanglement, in phase
estimation: using an entangled qubit–antiqubit pair, we
measured the strength of a field pointing in an arbitrary
direction. Our strategy works as well even if the direction
is unknown. Furthermore, the strategy enabled a greater
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FIG. 3. Phase estimation with qubit–antiqubit pairs.
(a) Circuit diagram for agnostic phase estimation with syn-
thetic positronium. q and q̄ are prepared in the entangled
state |Ψ−⟩, platform-specific unitary inversion effects U† on
the antiqubit, and the pair is measured in the singlet/not-
singlet basis. (b) Probability P (|Ψ−⟩) that the measurement
yields the singlet outcome, plotted against α. Different col-
ors, marker shapes, and line textures correspond to different
rotation axes. (c) Circuit diagram for optimal entanglement-
free phase estimation performed with a qubit and an an-
tiqubit. (d) Probabilities associated with possible outcomes
of the entanglement-free experiment’s measurements. (e) FI
inferable per vst = 2 (i) from positronium metrology and (ii)
from phase estimation performed with a separable state of a
qubit–antiqubit pair. Error bars result from propagating un-
certainty in the curve fitting.

Fisher information, per two units of space–time volume,
than two competitor strategies.

This work establishes several opportunities for future
research. First, we outline an extension of our scheme to
achieve more FI per unit space–time volume. Second, we
sketch a use of actual antimatter in quantum sensing. Fi-
nally, we identify further applications of platform-specific
unitary inversion and synthetic positronium.

By extending our protocol, one can achieve the great-
est possible amount of FI per unit space–time volume,

not only the greatest possible amount per two units [45].
Consider subjecting one synthetic-positronium atom to
the external field n times sequentially. This protocol
achieves an FI of 4n2, which equals the QFI. The space–
time volume used is 2n, so the FI per unit space–time
volume is 2n, the optimal value [45].
Our protocol extends not only to n sequential field ap-

plications, but also to true antimatter. True positron-
ium offers an advantage over its synthetic counterpart:
the positron’s gyromagnetic ratio has precisely the same
magnitude as the electron’s. Hence imperfect control
does not threaten the unitary inversion. Moreover, the
unitary inversion costs no control resources. One can
perform our protocol’s measurement [top of Fig. 3(a)]
on true positronium using current technology, positro-
nium annihilation-lifetime spectroscopy [46]. One mea-
sures the time required for a positronium atom to decay
into photons. From the time, one can infer the former
atom’s spin state: the positronium triplets’ lifetimes ex-
ceed the singlet’s lifetime by three orders of magnitude.
Yet our protocol’s state preparation [bottom of Fig. 3(a)]
poses a challenge for positronium, as positronium singlets
decay quickly. One can prepare longer-lived entangled
triplets, however [47]. Using a positronium triplet, one
can achieve an entanglement advantage in a metrological
task, albeit not the task in the present paper [48].
True positronium aside, we expect synthetic positron-

ium and platform-specific unitary inversion to find ap-
plications beyond metrology. Unitary-inversion meth-
ods have enjoyed considerable interest for years, includ-
ing recently [49–60]. Diverse applications motivate such
advances. For instance, efficient unitary inversion un-
derpins quantum algorithms that require black-box ac-
cess to Uα and U†

α. Example algorithms include ampli-
tude amplification [61], phase estimation [62], and quan-
tum singular-value transformations [13]. Additionally,
unitary inversion enables multiparameter sensing that
achieves the best possible precision (the Cramér–Rao
limit), using a fixed measurement setup [63, 64]. Finally,
by efficiently inverting unknown unitaries, an adversary
can break certain cryptographic schemes [65]. Hence we
expect our platform-specific unitary inversion to enable
applications across and beyond metrology.
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.

Supplementary Information for “Superconducting antiqubits achieve optimal phase
estimation via unitary inversion”

Supplementary Note I concerns the FI achievable using positronium metrology. This FI equals the greatest QFI
achievable with any strategy, regardless of whether the field direction is known. Supplementary Note II identifies
the greatest possible amount of QFI achievable with synthetic antimatter but without entanglement. This sensing
strategy provides a foil for positronium metrology. Supplementary Note III details how we realize antiqubits. In
Suppl. Note IV, we describe our experimental setup and quantum gates.

I. FI ACHIEVABLE VIA POSITRONIUM METROLOGY

The main text contains three claims about the FI achievable with positronium metrology: (i) Positronium metrology
achieves a FI of Iα = 4 while consuming vst = 2 units of space–time volume. (ii) This FI equals the corresponding
QFI, which equals the greatest QFI achievable when the field direction is unknown. (iii) In every strategy that satisfies
property (ii), one must effectively invert the field experienced by q̄. We prove all three claims here.

We begin by introducing terminology. In the main text, qubit means quantum two-level system that acts like
ordinary matter and contrasts with antiqubit. When referring to an object that could be a qubit or an antiqubit, we
wrote transmon. Here, we often refer to a system that (a) could be a qubit or an antiqubit and (b) could be realized
with any suitable physical platform, not only with a transmon. We call such an object a two-level system (TLS)
throughout this supplementary note.

A protocol’s space–time volume equals the product (number of TLSs used)×(number of sequential unitary appli-
cations). Consequently, each of two protocol structures incurs a space–time volume of two. First, one TLS may
undergo two consecutive applications of Uα = e−iαH . Second, two TLSs may simultaneously undergo Uα or U†

α. We
sequentially calculate the QFIs achievable with these protocol structures.

First, consider subjecting one TLS to two sequential unitary applications. Suppose that the rotation axis, n̂, is
known. The optimal probe state is an equal superposition of the eigenstates of H = n̂ · σ/2, which has eigenvalues
E± = ±1/2. The probe, subjected to two sequential unitaries, undergoes U2

α = e−2iαH . The effective generator is
2H, whose spectral gap is 2. By Eq. (2), therefore, the QFI is Iα = 4.
Second, consider two TLSs evolving in parallel, each undergoing Uα or U†

α. In Suppl. Note IA, we derive a general
formula for the QFI achievable, in this scenario, with two TLSs prepared in a pure state. We apply the formula to
separable states and to maximally entangled states in Suppl. Note IB. Denote the TLSs’ initial joint state by |ψ⟩.
Denote its concurrence—a measure of the state’s entanglement [67]—by C(|ψ⟩). In Suppl. Note IC, we prove that
the QFI obeys the upper bound

Iα ≤ 2 [1 + C(|ψ⟩)] ≤ 4. (6)

The concurrence ranges from 0, for separable states, to 1, for maximally entangled states (Bell pairs). Furthermore,
pure initial states enable the greatest possible QFI: if the initial state is mixed, quantum information has leaked from
the probe to the environment, preventing the metrologist from gathering all possible information from the probe.
Hence 4 is the greatest QFI achievable with any initial state of two TLSs that experience a field simultaneously.

To achieve this QFI without knowing the rotation axis, one must effectively invert the field, we prove in
Suppl. Note ID. Positronium metrology effectively inverts the field by simulating antimatter. In Suppl. Note I E,
we prove that positronium metrology can achieve an FI equal to this QFI. Therefore, positronium metrology can
achieve an FI equal to the greatest possible QFI achievable with two units of space–time volume.

A. QFI achievable with two TLSs and one application of the external field

In this supplementary note, we derive a formula for the QFI achievable with two TLSs, each of which undergoes Uα
or U†

α. This formula lays the foundation for later supplementary notes: in Suppl. Note IB, we apply the formula to
separable states and to maximally entangled states. In Suppl. Note IC, we use the formula to prove the concurrence
bound (6). We use the formula, in Suppl. Note ID, to demonstrate that unitary inversion and entanglement enable
the unique strategy whose FI can achieve the greatest QFI attainable if one does not know the field’s direction.

Consider rotating a TLS through an unknown angle α about the axis n̂ = (sin (θ) cos (ϕ), sin (θ) sin (ϕ), cos (θ)).
The unitary Uα = e−iαn̂·σ/2 represents this operation. Consider subjecting one TLS to Uα and another TLS to either
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Uα or U†
α. The TLS pair’s joint state evolves under

U (+)
α := Uα ⊗ Uα = e−iαn̂·σ/2 ⊗ e−iαn̂·σ/2 = e−iα(n̂·σ⊗1+1⊗n̂·σ)/2 or (7)

U (−)
α := Uα ⊗ U†

α = e−iαn̂·σ/2 ⊗ e+iαn̂·σ/2 = e−iα(n̂·σ⊗1−1⊗n̂·σ)/2 . (8)

We synopsize both equations in

U (±)
α = e−iα(n̂·σ⊗1±1⊗n̂·σ)/2 =: e−iαH

(±)/2. (9)

The effective Hamiltonian has the form H(±) := n̂ · σ ⊗ 1± 1⊗ n̂ · σ.
Let us calculate the QFI one can achieve by evolving a two-TLS state |ψ⟩ under U (±)

α . The following calculation
does not depend on whether an agent prepared |ψ⟩ using knowledge of n̂.

First, we introduce notation. We label the first TLS as A and the second as B. We define a tensor T in terms of
its elements,

Tij := ⟨ψ|σi ⊗ σj |ψ⟩ . (10)

The TLSs initially have the Bloch vectors

r(A) := ⟨ψ|σ ⊗ 1|ψ⟩ and r(B) := ⟨ψ|1⊗ σ|ψ⟩. (11)

Projecting the Bloch vectors onto n̂ yields

rn̂
(i) := n̂ · r(i), wherein i = A,B. (12)

Finally, let s := ±1. In terms of the quantities above, we can express the QFI achievable with the probe prepared in
|ψ⟩. The QFI equals the variance of H(±), calculated in the rest of this supplementary note:

I(s)
α =

(
∆H(s)

)2

= 2
(
1 + s n̂T T n̂

)
−

(
r
(A)
n̂ + s r

(B)
n̂

)2

. (13)

Let us prove Eq. (13). The effective Hamiltonian has a variance(
∆H(±)

)2

= ⟨ψ|
(
H(±)

)2

|ψ⟩ − ⟨ψ|H(±)|ψ⟩
2
. (14)

We calculate the two terms sequentially. The first has the form

⟨ψ|
(
H(±)

)2

|ψ⟩ = ⟨ψ| (n̂ · σ ⊗ 1± 1⊗ n̂ · σ)2 |ψ⟩ (15)

= ⟨ψ| (n̂ · σ)2 ⊗ 1+ 1⊗ (n̂ · σ)2 ± 2 (n̂ · σ ⊗ n̂ · σ) |ψ⟩ (16)

= ⟨ψ| (1⊗ 1) + (1⊗ 1)± 2 (n̂ · σ ⊗ n̂ · σ) |ψ⟩ (17)

= 2 [1± ⟨ψ| (n̂ · σ ⊗ n̂ · σ) |ψ⟩] (18)

= 2 [1± n̂ · ⟨ψ| (σ ⊗ σ) |ψ⟩ · n̂] (19)

= 2
(
1± n̂TT n̂

)
. (20)

The second term in Eq. (14) has the form

⟨ψ|H(±)|ψ⟩
2
= ⟨ψ|n̂ · σ ⊗ 1± 1⊗ n̂ · σ|ψ⟩2 (21)

= (⟨ψ|n̂ · σ ⊗ 1|ψ⟩ ± ⟨ψ|1⊗ n̂ · σ|ψ⟩)2 (22)

= (n̂ · ⟨ψ|σ ⊗ 1|ψ⟩ ± n̂ · ⟨ψ|1⊗ σ|ψ⟩)2 (23)

=
(
n̂ · r(A) ± n̂ · r(B)

)2

(24)

=
(
r
(A)
n̂ ± r

(B)
n̂

)2

. (25)

Inserting Eqs. (20) and (25) into Eq. (14) yields Eq. (13), the formula we aimed to prove.
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B. QFI achievable with two TLSs prepared in a maximally entangled state or in a separable state

In this supplementary note, we apply Eq. (13) to two cases. First, we calculate the QFI achievable with two TLSs
prepared in a maximally entangled state, such as the singlet state used in positronium metrology. Then, we calculate
the QFI achievable with a separable state. This analysis illuminates how the QFI depends on the initial state’s
entanglement.

Maximally entangled states: Suppose the TLSs are prepared in a maximally entangled |ψ⟩. Each TLS’s reduced
state is maximally mixed: TrB(|ψ⟩⟨ψ|) = 1

21A , and TrA(|ψ⟩⟨ψ|) = 1
21B . Hence, since the Pauli operators are traceless,

r(A) = 1
2Tr(σ ⊗ 1) = 1

2Tr(σ) = 0. The Bloch vector r(B) vanishes analogously. Hence the Bloch vectors’ projections

vanish, r
(A)
n̂ = r

(B)
n̂ = 0, regardless of n̂. Therefore, Eq. (13) reduces to

I(s)
α = 2

(
1 + s n̂T T n̂

)
. (26)

In positronium metrology, the two-TLS state |ψ⟩ = |Ψ−⟩ is the singlet. The qubit probe and antiqubit ancilla
rotate oppositely, so s = −1. This state’s T = −1, so Eq. (26) simplifies to

I(−)
α = 2

[
1− n̂T (−1) n̂

]
= 2

(
1 + |n̂|2

)
= 4. (27)

Hence the QFI does not depend on the rotation axis.

Suppose that |ψ⟩ is any other maximally entangled state. T is a diagonal matrix with a determinant of 1. However,
T is not proportional to the identity matrix, as it does if |ψ⟩ is a singlet. Consequently, the QFI depends on the rotation

axis. I(s)
α achieves its maximum value (which equals 4, we show shortly) when the rotation axis is an eigenvalue-s

eigenvector of T : T n̂ = sn̂. Under this condition, the QFI evaluates to

I(s)
α = 2

(
1 + s n̂T T n̂

)
= 2

(
1 + s n̂T s n̂

)
= 2

(
1 + s2n̂2

)
= 4. (28)

In Suppl. Note IC, we identify the states |ψ⟩ that satisfy the maximum-QFI condition T n̂ = sn̂.

Separable states: Now, suppose that the two TLSs are prepared in a separable |ψ⟩. By Eqs. (10) and (11),

T = r(A)r(B)T . We substitute the right-hand side into the QFI formula (13):

I(s)
α = 2

(
1 + s n̂T r(A)r(B)T n̂

)
−
(
r
(A)
n̂ + sr

(B)
n̂

)2

= 2
(
1 + s r

(A)
n̂ r

(B)
n̂

)
−

(
r
(A)
n̂ + sr

(B)
n̂

)2

(29)

= 2
[
1−

(
r
(A)
n̂

2
+ r

(B)
n̂

2)]
≤ 2. (30)

This QFI maximizes when r
(A)
n̂ = r

(B)
n̂ = 0: both TLSs’ initial Bloch vectors point orthogonally to n̂.

C. Proof of the bound (6) on the QFI achievable with two TLSs

In this supplementary note, we bound the QFI I(s)
α in terms of the two TLSs’ initial concurrence, C(|ψ⟩). We

reproduce the main result, Eq. (6), here for convenience:

I(s)
α ≤ 2[1 + C(ψ)]. (31)

The concurrence C quantifies entanglement [67], ranging from 0 (for separable states) to 1 (for maximally entangled
states). We also identify the two-TLS states that saturate Eq. (31).

Our strategy is as follows. First, we consider a general two-TLS state |ψ⟩ that has a fixed concurrence C(|ψ⟩) = C0.
We parameterize |ψ⟩ using local unitaries acting on a simpler reference state |χ⟩ that has the concurrence C0. This
parameterization leverages the concurrence’s invariance under local unitary operations. We compute the reference
state’s QFI, using Eq. (13). To simplify the analysis, we move to a rotated frame, in which the QFI depends only
on the relative rotation between the TLSs, Urel := U−1

A UB . Finally, we reformulate the QFI as a quadratic form
that reveals the optimal relative rotation’s structure. This reformulation yields the bound (31), as well as a complete
characterization of the states |ψ⟩ that saturate it.
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1. General pure two-TLS state and concurrence

A general two-TLS pure state has the form

|ψ⟩ = a |00⟩+ b |01⟩+ c |10⟩+ d |11⟩ , wherein |a|2 + |b|2 + |c|2 + |d|2 = 1. (32)

This state has the concurrence [68]

C0 := C(|ψ⟩) = |ad− bc| ∈ [0, 1]. (33)

Denote by |χ⟩ a reference state that has the same concurrence, C(|χ⟩) = C0:

|χ⟩ :=
√
λ1 |00⟩+

√
λ2 |11⟩ , (34)

wherein λ1,2 =
1±

√
1−C2

0

2 . From |χ⟩, one can generate every concurrence-C0 two-TLS state |χ⟩ via single-TLS unitaries
UA and UB [69]:

|ψ⟩ = (UA ⊗ UB) |χ⟩ . (35)

2. QFI achievable with fixed-concurrence states

In this section, we compute the QFI achievable with a general pure two-TLS state |ψ⟩ of fixed concurrence C0.
Directly evaluating the QFI is algebraically cumbersome. Yet we can simplify the calculation because every such state
decomposes as |ψ⟩ = (UA ⊗ UB) |χ⟩ in terms of the reference state |χ⟩ introduced in Eq. (34). Evaluating the QFI
achievable with |χ⟩ is simple: the state’s correlation tensor T is diagonal, and its Bloch vectors r(A), r(B) = ẑ. We
incorporate the local unitaries’ effects into the QFI using the unitaries, RA and RB , that represent the corresponding
rotations on the Bloch sphere. A simple QFI expression results; we optimize it across the field directions n̂ and across
the concurrence-C0 states.

To calculate the QFI of |ψ⟩, we use (13):

I(s)
α =

(
∆H(s)

)2

= 2
(
1 + s n̂T T n̂

)
−

(
r
(A)
n̂ + s r

(B)
n̂

)2

. (36)

First, we compute T , r
(A)
n̂ , and r

(B)
n̂ :

Tij := ⟨ψ|σi ⊗ σj |ψ⟩ = ⟨χ|
(
U†
A ⊗ U†

B

)
σi ⊗ σj(UA ⊗ UB)|χ⟩ = ⟨χ|U†

AσiUA ⊗ U†
BσjUB |χ⟩ (37)

= (RA)ik(RB)jℓ ⟨χ|σk ⊗ σℓ|χ⟩ . (38)

The matrices RA, RB ∈ SO(3) describe how the local unitaries UA and UB rotate the Pauli vectors σi,j across the
Bloch sphere:

U†
XσiUX = (RX)ijσj , wherein X = A,B. (39)

Directly calculating the final factor in Eq. (38), ⟨χ|σk ⊗ σℓ|χ⟩, yields

T = RA

C0 0 0
0 −C0 0
0 0 1

RT
B ≡ RADRT

B . (40)

We have defined the diagonal matrix D := diag(C0,−C0, 1). Having calculated the T in Eq. (36), we compute the

Bloch-vector projections r
(A)
n̂ := n̂ · r(A) and r

(B)
n̂ := n̂ · r(B). We can express the ith component of r(A) in terms of

the rotation matrix RA and the concurrence C0:

r(A)
i := ⟨ψ|σi ⊗ 1|ψ⟩ = ⟨χ|U†

AσiUA ⊗ 1|χ⟩ = (RA)ik ⟨χ|σk ⊗ 1|χ⟩ =
√
1− C2

0 (RA ẑ)i . (41)

r(B) obeys an analogous equation. In summary,

r(A) =
√
1− C2

0RA ẑ, and (42)

r(B) =
√
1− C2

0RB ẑ. (43)
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Let us substitute the calculated quantities from Eqs. (40), (42) and (43) into the QFI formula (13):

I(s)
α = 2

(
1 + s n̂T T n̂

)
−
(
r
(A)
n̂ + sr

(B)
n̂

)2

= 2 + 2s n̂T T n̂−
[
n̂ ·

(
r(A) + sr(B)

)]2
(44)

= 2 + 2s n̂T
(
RADRT

B

)
n̂−

(
1− C2

0

) [
n̂T (RAẑ + sRB ẑ)

]2
. (45)

3. QFI achievable with a general two-TLS pure state, calculated in a rotated reference frame

Equation (45) shows a QFI dependent on the Bloch-sphere rotations RA, RB ∈ SO(3). They represent the single-
TLS unitaries UA and UB . We now analyze how these rotations affect the QFI. According to Eq. (35), every pure,
concurrence-C0 two-TLS state |ψ⟩ results from applying single-TLS unitaries to a concurrence-C0 reference state |χ⟩.
Those unitaries decompose into (i) two identical single-TLS unitaries Uid and (ii) a relative rotation Urel:

|ψ⟩ = (Uid ⊗ Uid)(1⊗ Urel) |χ⟩ . (46)

We now show that the greatest possible QFI (the maximum over field directions n̂) is invariant under identical
rotations of both TLSs. Let S ∈ SO(3) denote an arbitrary rotation matrix: SST = STS = 1. We define a rotated
reference frame by applying S to the original rotation matrices (RA and RB) and to the field direction (n̂):

RA 7→ SRA , RB 7→ SRB , and n̂ 7→ Sn̂. (47)

The QFI is invariant under this rotation. We prove this claim by transforming each component of Eq. (45) that is
not overtly a scalar:

n̂T
(
RADRT

B

)
n̂ 7→ (Sn̂)T

[
SRAD (SRB)

T
]
(Sn̂) = n̂TSTS

(
RADRT

B

)
STSn̂ = n̂T

(
RADRT

B

)
n̂, and (48)

n̂T (RAẑ + sRB ẑ) 7→ (Sn̂)T (SRAẑ + sSRB ẑ) = n̂TSTS (RAẑ + sRB ẑ) = n̂T (RAẑ + sRB ẑ) . (49)

Without loss of generality, we select S = R−1
A . By the mapping in Eq. (47), RA 7→ SRA = 1, and RB 7→ SRB =

R−1
A RB =: Rrel. To calculate the effect of S on the QFI, we apply these mappings to Eq. (45):

I(s)
α = 2 + 2s (Sn̂)

T
[
(SRA) D (SRB)

T
]
(Sn̂)−

(
1− C2

0

){
(Sn̂)

T
[(SRA) ẑ + s (SRB) ẑ]

}2

(50)

= 2 + 2

{
s (Sn̂)

T (
DRT

rel

)
(Sn̂)−

(
1− C2

0

) [
(Sn̂)

T
(ẑ + sRrelẑ)

]2}
(51)

≤ 2 + 2 max
n̂

{
s n̂T

(
DRT

rel

)
n̂−

(
1− C2

0

) [
n̂T (ẑ + sRrelẑ)

]2}
. (52)

Equation (51) reveals that rotating the reference frame, using S, amounts to redefining n̂. By maximizing over n̂ in
Eq. (52), we removed the S-dependence, reformulating Eq. (45) in a way that only depends on the relative rotation
Rrel.

4. Greatest QFI achievable with any fixed-concurrence two-TLS state

In this section, we identify the external-field directions n̂ and the relative rotation Rrel that maximize the QFI
achievable with a concurrence-C0 state. One might hope to maximize the first term inside the curly braces in
Eq. (52), while keeping the second (nonpositive) term zero. This strategy is unfortunately impossible, except when
C0 = 1. We thus rewrite Eq. (52) in a form that points to the optimal relative rotation Rrel.

We rewrite the bound as follows. First, we expand the term proportional to (1−C2
0 ). Then, we express the diagonal
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matrix as D as diag(C0,−C0, 1) = C0x̂x̂
T − C0ŷŷ

T + ẑẑT. The bound assumes the form

I(s)
α ≤ 2 + 2 max

n̂

{
s n̂T

(
DRT

rel

)
n̂−

(
1− C2

0

) [
n̂T (ẑ + sRrelẑ)

]2}
(53)

= 2 + 2 max
n̂

{
s n̂T

(
DRT

rel

)
n̂−

(
1− C2

0

)
n̂T (ẑ + sRrelẑ) (ẑ + sRrelẑ)

T
n̂
}

(54)

= 2 + 2 max
n̂

n̂T
{
s
(
ẑẑTRT

rel

)
+ sC0

(
x̂x̂T − ŷŷT

)
RT

rel

− (1− C2
0 )

[
ẑẑT + sẑ(Rrelẑ)

T + s(Rrelẑ)ẑ
T + (Rrelẑ)(Rrelẑ)

T
] }

n̂ (55)

= 2 + 2 max
n̂

n̂T
{
sC2

0

(
ẑẑTRT

rel

)
+ sC0

(
x̂x̂T − ŷŷT

)
RT

rel

− (1− C2
0 )

[
ẑẑT + s(Rrelẑ)ẑ

T + (Rrelẑ)(Rrelẑ)
T
] }

n̂ (56)

= 2 + 2 max
n̂

n̂T
{
sC0

(
x̂x̂T − ŷŷT + C0ẑẑ

T
)
RT

rel − (1− C2
0 )

[
ẑẑT + s(Rrelẑ)ẑ

T + (Rrelẑ)(Rrelẑ)
T
]}

n̂. (57)

The term proportional to (1 − C2
0 ) yields a nonpositive contribution to the QFI, due to two facts. First, −(1 − C2

0 )
is nonpositive for all C0 ∈ [0, 1]. Second, the quadratic form is non-negative for all n̂:

n̂T
[
ẑẑT + s(Rrelẑ)ẑ

T + (Rrelẑ)(Rrelẑ)
T
]
n̂ = |n̂Tẑ|2 + |n̂TRrelẑ|2 + s(n̂TRrelẑ)(ẑ

Tn̂) (58)

=
(
n̂Tẑ +

s

2
n̂TRrelẑ

)2

+

(
1− s2

4

)
|n̂TRrelẑ|2 ≥ 0. (59)

This inequality saturates only if both terms in Eq. (59) vanish. The second term vanishes when n̂TRrelẑ = 0, such
that n̂ ⊥ Rrelẑ. Under this condition, the first term in Eq. (59) vanishes when n̂Tẑ, such that n̂ ⊥ ẑ. In summary,
the inequality (59) saturates if and only if n̂ ⊥ ẑ, Rrelẑ. This condition is satisfied, for example, when n̂ ⊥ ẑ and
Rreln̂ = ±n̂.
Having identified under which condition the nonpositive contribution to the QFI vanishes, we demonstrate that

this condition maximizes the term proportional to sC0 in Eq. (57). The analysis decomposes into two distinct cases:

• C0 ̸= 1: The contribution proportional to sC0 in Eq. (57), sC0 n̂
T
(
x̂x̂T − ŷŷT + C0ẑẑ

T
)
RT

reln̂, assumes its

maximum, +1, if the field direction n̂ is an eigenvector, associated with the eigenvalue s′ := ±1, of RT
rel:

RT
reln̂ = s′n̂. If ss′ = −1, then n̂ = ŷ. If ss′ = 1, then n̂ = x̂. Under each of these two conditions, the term

proportional to (1− C2
0 ) in Eq. (57) vanishes. The QFI simplifies to

I(s)
α = 2(1 + C0). (60)

Every other Rrel or n̂ leads to a smaller QFI: the term proportional to sC0 in Eq. (57) shrinks, and the term
proportional to (1− C2

0 ) contributes a negative value.

• C0 = 1: The term proportional to (1 − C2
0 ) in Eq. (57) vanishes identically. The maximal QFI is therefore

determined entirely by the contribution proportional to sC0, sC0 n̂
T
(
x̂x̂T − ŷŷT + ẑẑT

)
RT

reln̂. This expression

assumes its maximum, +1, when RT
reln̂ = s′n̂. If ss′ = −1, then n̂ = ŷ. If ss′ = +1, then n̂ lies in the x̂ẑ-

plane. Under each of these two conditions, the QFI achieves its maximal value, I(s)
α = 4. The QFI maximizes,

for example, if s = −1 and RT
rel = diag(−1, 1,−1). This Rrel represents a π rotation about the y-axis. The

achievable QFI is optimal in this case, regardless of n̂.

In summary, we have shown that the greatest QFI achievable with a concurrence-C0 input state |ψ⟩ is I(s)
α = 2(1+C0),

if C0 < 1, or I(s)
α = 4, if C0 = 1. We have therefore proved Eq. (31).

5. Optimal input states

We now characterize the optimal two-TLS input states consistent with a fixed concurrence C0. We define the
optimal input states |ψ⟩ as those that, while having a concurrence C0, saturate the upper bound (31). They achieve

the greatest possible QFI, I(s)
α = 2(1 + C0).
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We pursue the following strategy. The previous supplementary note specifies the relative rotation matrix Rrel that
maximizes the QFI. We construct the single-TLS unitary Urel that implements this Rrel. By substituting the unitary’s
form into Eq. (46), we construct the optimal input states. We enumerate all the possible cases, distinguished by (i)
the concurrence’s value (C0 ̸= 1 or C0 = 1) and (ii) whether the TLSs rotate in the same direction (s = ±1). Then, we
show that positronium metrology exemplifies one of these cases and so achieves the greatest possible QFI. Throughout
this supplementary note, Uid denotes an arbitrary single-TLS unitary, representing the collective rotation introduced
in Eq. (46).

Recall that, when C0 ̸= 1, the QFI is maximized when RT
reln̂ = s′n̂, wherein n̂ = ŷ (if ss′ = −1) or n̂ = x̂ (if

ss′ = 1). Hence, if C0 ̸= 1 and s = −1, the QFI is maximized when Rrelŷ = ŷ or Rrelx̂ = −x̂. First, suppose that

Rrelŷ = ŷ: the relative rotation is through an arbitrary angle ϕ about the y-axis. The unitary Urel = exp
(
−iϕ2 σy

)
implements this rotation. Now, suppose that Rrelx̂ = −x̂: the relative rotation is through an angle π about an axis
perpendicular to x̂. The unitary Urel = exp(−iπ2 [cos (ϕ)σy + sin (ϕ)σz]) implements this rotation. The rotation axis,
perpendicular to x̂, lies in the yz-plane, at an arbitrary angle ϕ to the ŷ-axis. By Eq. (46), the QFI is maximized if

|ψ⟩ =


[
Uid ⊗ Uid exp

(
−iϕ2 σy

)]
|χ⟩

{
Uid ⊗ Uid exp(−iπ2 [cos (ϕ)σy + sin (ϕ)σz])

}
|χ⟩ ,

if s = −1. (61)

Now, suppose that C0 ̸= 1 and s = 1. The QFI is maximized when Rrelx̂ = x̂ or Rrelŷ = −ŷ. We now identify

the unitary that implements each of these possible relative rotations. If Rrelx̂ = x̂, then Urel = exp
(
−iϕ2 σx

)
. If

Rrelŷ = −ŷ, then Urel = exp
(
−iπ2 [cos (ϕ)σx + sin (ϕ)σz]

)
. By Eq. (46), the optimal input state has the form

|ψ⟩ =


[
Uid ⊗ Uid exp

(
−iϕ2 σx

)]
|χ⟩

{
Uid ⊗ Uid exp(−iπ2 [cos (ϕ)σx + sin (ϕ)σz])

}
|χ⟩ ,

if s = 1. (62)

Finally, suppose that C0 = 1. We identify similarly the states that saturate the QFI bound Eq. (31):

|ψ⟩ =


[
Uid ⊗ Uid exp

(
− iϕ

2 σy

)]
|χ⟩

(Uid ⊗−iUid n̂ · σ) |χ⟩ ,
if s = −1, (63)

and

|ψ⟩ =
{
Uid ⊗ Uid exp

(
−iθ

2
[cos(ϕ)σx + sin(ϕ)σz]

)}
|χ⟩ , if s = 1. (64)

We now show that positronium metrology exemplifies one of the optimal-QFI conditions above. When C0 = 1 and
s = −1 [Eq. (63)], one can achieve the greatest possible QFI (under the concurrence constraint), regardless of n̂, with
the relative rotation RT

rel = diag(−1, 1,−1), a π rotation about the y-axis. The unitary Urel = exp
(
−iπ2σy

)
= −iσy

implements this rotation. Since C0 = 1, |χ⟩ = |Φ+⟩. According to Eq. (46), the relative rotation transforms |Φ+⟩
into the singlet: (1 ⊗ −iσy) |Φ+⟩ = |Ψ−⟩. The singlet is invariant under tensor products of identical rotations:
(Uid ⊗ Uid) |Ψ−⟩ = eiγ |Ψ−⟩, wherein γ denotes a global-phase angle. Thus, the optimal input state is the singlet:

|ψ⟩ = (Uid ⊗ Uid)(1⊗−iσy) |Φ+⟩ = (Uid ⊗ Uid) |Ψ−⟩ = eiγ |Ψ−⟩ . (65)

This setup—initializing the singlet |Ψ−⟩ and rotating the TLSs oppositely—defines our positronium metrology pro-

tocol. Therefore, positronium metrology achieves the maximal QFI, I(−)
α = 4, regardless of the direction n̂. Below,

we prove that, if n̂ is unknown and one can consume only two units of space–time volume, to achieve the greatest
possible QFI, one must (i) entangle two TLSs and (ii) effectively invert the field experienced by one TLS.

D. Effective unitary inversion, combined with entanglement, is the only strategy whose QFI achieves the
greatest possible QFI attainable if n̂ is unknown and vst = 2

Below, we prove that effective unitary inversion and entanglement enable the unique optimal sensing strategy
available when (i) n̂ is unknown and (ii) the sensing can consume only vst = 2 units of space–time volume. By
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optimal, we mean that the strategy’s QFI equals the greatest possible QFI achievable, Iα = 4. This equality does not
depend on the rotation axis.

Two protocol structures incur space–time volumes vst = 2, as explained in Suppl. Note I. First, one TLS may
undergo two sequential applications of Uα = e−iαH . In this scenario, the QFI attains its maximum value, 4, if the
input state is an equal-weight superposition of the eigenstates of H = n̂ · σ/2. These eigenstates depend on n̂, so
this strategy is not deterministically achievable if n̂ is unknown. Second, two TLSs may experience the external field
simultaneously, such that each undergoes Uα or U†

α. We continue to analyze this scenario below. We show that the
only optimal strategy meets two conditions: (i) The input state |ψ⟩ is a singlet. (ii) One TLS undergoes Uα, while
the other undergoes U†

α.
To identify the optimal strategy, we begin consider a general pure two-TLS state:

|ψ⟩ = a|00⟩+ b|01⟩+ c|10⟩+ d|11⟩, wherein |a|2 + |b|2 + |c|2 + |d|2 = 1. (66)

This state’s T matrix depends on the coefficients’ real (R) and imaginary (I) components as

T =

 2R(ad∗ + bc∗) 2I(bc∗ − ad∗) 2R(ac∗ − bd∗)
−2I(ad∗ + bc∗) 2R(bc∗ − ad∗) 2I(bd∗ − ac∗)
2R(ab∗ − cd∗) 2I(cd∗ − ab∗) |a|2 − |b|2 − |c|2 + |d|2

 . (67)

The optimal n̂-independent strategy implies, by Eq. (26), that I(s)
α = 2

(
1 + s n̂T T n̂

)
= 4, ∀n̂. This equation

simplifies algebraically to n̂T T n̂ = s. Since this equation holds for all n̂ (by the strategy’s independence of n̂),
T = s1. This condition is equivalent, by Eq. (67), to the system of equations

|a|2 − |b|2 − |c|2 + |d|2 = s

2R(bc∗ + ad∗) = s

2R(bc∗ − ad∗) = s.

(68)

T has a unit determinant. Therefore, if T satisfies the equations above, its off-diagonal elements vanish. By the
second and third equations, R(ad∗) = 0, and R(bc∗) = s/2. Furthermore, by the Cauchy–Schwarz inequality,
|R(bc∗)| ≤ |b| · |c|. By the normalization condition in Eq. (66), |b| · |c| ≤ 1

2 . These conditions, with s = ±1, implies a
chain of inequalities:

1

2
=

∣∣∣s
2

∣∣∣ = |R(bc∗)| ≤ |b| · |c| ≤ 1

2
. (69)

Since the leftmost and rightmost expressions equal each other, the two inequalities are saturated. To saturate the
first inequality, b and c must have the same phase: b = |b|eiγ , and c = |c|eiγ . To saturate the second inequality, b and

c must satisfy |b| = |c| = 1/
√
2. The normalization of |ψ⟩ [Eq. (66)] then implies a = d = 0, which satisfies the earlier

requirement R(ad∗) = 0 [Eq. (68)].

Consider substituting |b| = |c| = 1/
√
2 and a = d = 0 in the first equality in (68). The condition s = −1 results

(s = +1 leads to a contradiction). Only the s = −1 state |ψ⟩—the singlet—satisfies the n̂-independent-optimality

condition T = s1: |ψ⟩ = eiγ√
2
(|10⟩ − |01⟩) .

E. Proof that positronium metrology achieves an FI of Iα = 4 while consuming a space–time volume vst = 2

Here, we prove that positronium metrology attains an FI of Iα = 4 while consuming two units of space–time volume.
This FI equals the corresponding QFI, as proved in Suppl. Note IB.

Positronium metrology involves three steps, as explained in Sec. V of the main text. First, we prepare a synthetic-
positronium atom (a qubit q and an antiqubit q̄) in a singlet, |Ψ−⟩ = 1√

2
(|01⟩ − |10⟩) . Second, we apply the unitary

Uα to q and U†
α to q̄. The joint state evolves to |ψα⟩ = (Uα ⊗ U†

α) |Ψ−⟩ = 1√
2

(
e−iα |01⟩ − eiα |10⟩

)
. Finally, we

projectively measure the POVM {|Ψ−⟩⟨Ψ−|, 1− |Ψ−⟩⟨Ψ−|}.
Having reviewed the protocol, we calculate the FI achievable with it. The measurement yields the |Ψ−⟩⟨Ψ−| outcome

with a probability

P (|Ψ−⟩) =
∣∣⟨Ψ−|ψα⟩

∣∣2 = cos2 (α). (70)
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This probability serves as the Pj=1 in the FI formula Iα =
∑
j

(∂αPj)
2

Pj
(reviewed in Sec. I of the main text). The

other probability is P2 = 1− P1. We substitute for P2 into the FI formula:

Iα =
∑
j

(∂αPj)
2

Pi
=

(∂αP1)
2

P1
+

(∂αP2)
2

P2
=

(∂αP1)
2

P1
+

[∂α(1− P1)]
2

1− P1
=

(∂αP1)
2

P1
+

(∂αP1)
2

1− P1
=

(∂αP1)
2

P1(1− P1)
. (71)

The remaining probability, P1 = P (|Ψ−⟩) = cos2 (α), has a derivative ∂αP (|Ψ−⟩) = −2 cos (α) sin (α). Substituting
into the FI formula yields

Iα =
[∂αP (|Ψ−⟩)]2

P (|Ψ−⟩) [1− P (|Ψ−⟩)]
=

4 cos2 (α) sin2 (α)

cos2 (α) sin2 (α)
= 4. (72)

We proved in Suppl. Note IB that the QFI, too, equals 4. Applying positronium metrology, one can achieve an FI
equal to the corresponding QFI (the greatest possible FI).

II. QFI ACHIEVABLE WITH SYNTHETIC ANTIMATTER AND NO ENTANGLEMENT

Positronium metrology exploits antimatter simulation and entanglement (Sec. II of the main text). We now isolate
the entanglement’s contribution to the metrological advantage. To do so, we evaluate the QFI attainable with (i)
synthetic antimatter and (ii) the input state used in our separable-state experiment, as reported on in the main text.
We calculate the QFI available to a metrologist who does not know the field orientation n̂ during the experiment.

First, we briefly review the separable protocol implemented experimentally. The two transmons are prepared in a
product state: the qubit q is initialized in |x+⟩; and the antiqubit q̄, in |z+⟩. (More generally, the two TLSs may
begin in any two orthogonal pure states.) The external field applies Uα = eiαH to q and U†

α = e−iαH to q̄. The
generator has the form H = (σ · n̂) /2, and n̂ denotes the unknown field direction. The qubit is measured with
the POVM {|x+⟩⟨x+|, |x−⟩⟨x−|}, which has a probability P (|x+⟩) of yielding the x+ outcome. Simultaneously, the
antiqubit is measured with {|z+⟩⟨z+|, |z−⟩⟨z−|}, which yields the z+ outcome with a probability P (|z+⟩). From these
probabilities, one can estimate α.
In the main text, we assumed that the metrologist learns n̂ after the experiment concludes. This assumption sim-

plified the analysis without affecting our main conclusion: entangled antimatter outperforms unentangled antimatter.
Here, we operate under a more stringent asumption: the direction n̂ remains unknown at all times. The motivation
is the need to compare the entanglement-free and positronium-metrology strategies fairly. One can use positronium
metrology without knowing the external field’s direction. Therefore, we assume that one does not know the direction
when using unentangled synthetic antimatter.

A. Multiparameter quantum metrology

To assess the entanglement-free strategy available to a metrologist ignorant of n̂, we must review another metro-
logical tool, the quantum Fisher-information matrix (QFIM). The metrologist aims to estimate the rotation angle
α. However, their ignorance about n̂ naturally elevates the task to multiparameter estimation of not only α, but
also the polar angle θ and azimuthal angle ϕ that defines n̂. In classical statistics, θ and ϕ act as nuisance parame-
ters—variables that influence the estimation of α but are not themselves of interest [70]. To accommodate them in
one’s analysis, one extends the FI framework to the multiparameter framework, defining an effective FI that marginal-
izes the nuisance contributions. Similarly, we calculate an effective single-parameter QFI, Iα,eff , that captures the
average precision with which one can estimate α without knowing the field direction.
In multiparameter quantum metrology, the QFIM quantifies a strategy’s effectiveness [66, 71]. To introduce the

QFIM, we define ϑ = (ϑ1, ϑ2, . . . , ϑk) as the vector of k parameters to be estimated. Let ρϑ denote a state dependent
on the vector. Associated with each parameter ϑi is an operator called the symmetric logarithmic derivative (SLD),
Li. It is defined implicitly through

∂ϑiρϑ =
1

2

(
ρϑLi + Liρϑ

)
. (73)

Using the SLDs, we can express the QFIM achievable with this state. The QFIM is a k × k positive-semidefinite
matrix with the elements

Mij(ϑ) =
1

2
Tr

(
ρϑ

{
Li, Lj

})
, wherein i, j = 1, 2, . . . , k. (74)
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The {A,B} := AB +BA denotes the anticommutator of the operators A and B.
Having defined the QFIM, we review its relevant properties. The QFIM generalizes the single-parameter quantum

Fisher information (QFI). If k = 1, Mii reduces to the QFI with respect to ϑi. However, when one estimates multiple
parameters simultaneously, the QFI does not quantify a strategy’s effectiveness. Rather, a matrix-valued bound (the
quantum Cramér–Rao bound) captures the limitations on simultaneous parameter estimation. To derive the quantum
Cramér–Rao bound, we review estimators and covariance matrices. Consider a measurement that yields outcome k

with a probability p(k|ϑ). An estimator is a function ϑ̂(k) that maps each k to a candidate estimate of ϑ. We focus
on locally unbiased estimators, which satisfy the two conditions:∑

k

[ϑi − ϑ̂i(k)] p(k|ϑ) = 0, and
∑
k

ϑ̂i(k)
∂p(k|ϑ)
∂ϑj

= δij . (75)

According to the first condition, the estimator tracks the parameter’s true value faithfully, to first order around the
point ϑ. The second constraint excludes pathological estimators. Examples include an estimator that returns a fixed

value, irrespectively of the measurement outcome. We quantify an unbiased estimator’s accuracy ϑ̂ with covariance
matrix,

Cov(ϑ̂) :=
∑
k

[
ϑ̂(k)− ϑ

] [
ϑ̂(k)− ϑ

]T
p(k|ϑ). (76)

To express the Cramér–Rao bound concisely, we introduce the Loewner (positive-semidefinite) ordering: if A and B
denote Hermitian operators, then A ⪰ B means that A − B is positive-semidefinite. In terms of this definition, the
multiparameter quantum Cramér–Rao bound (QCRB) has the form

Cov(ϑ̂) ⪰ M−1(ϑ). (77)

Let us apply this formalism to our setting. The QFIM for the three unknown parameters (α, θ, and ϕ) assumes
the form

M =

Mαα Mαθ Mαϕ

Mθα Mθθ Mθϕ

Mϕα Mϕθ Mϕϕ

 . (78)

Define Mn̂n̂ as the lower-right 2 × 2 block, associated with the nuisance parameters. Also, define MT
αn̂ :=

(Mαθ,Mαϕ). This two-element vector quantifies the correlations between α, and n̂. In terms of these quantities, we
can express the QFIM compactly:

M =

(
Mαα MT

αn̂
Mn̂α Mn̂n̂

)
. (79)

Now, we bound the precision with which one can estimate α, without knowing n̂. We adapt the multiparameter
QCRB [Eq. (77)] by invoking two properties of matrices. One is the Loewner ordering. The other is the non-negativity
of every positive-semidefinite matrix’s diagonal elements. From these ingredients, we derive Var(α̂) ≥

(
M−1

)
αα

. We

refine this bound using the Schur complement formula [70, 72]:

Var(α̂) ≥
(
M−1

)
αα

=
(
M−1

αα −MT
αn̂Mn̂n̂Mn̂α

)−1
. (80)

The QFIM is positive-semidefinite, so the second term in Eq. (80) is non-negative. Therefore, we can achieve less
precision in the presence of nuisance parameters than when performing single-parameter estimation. In the latter
case, Var(α̂) ≥ M−1

αα. The two bounds coincide if and only if Mαn̂ = 0—if and only if the QFIM is block-diagonal:

M =

(
Mαα 0
0 Mn̂n̂

)
for all (α, n̂). (81)

If the QFIM lacks this structure, we can define an effective QFI Iα,eff for α. We average over a prior distribution for
n̂:

Iα,eff :=
〈(
M−1

)
αα

〉
n̂
=

〈(
M−1

αα −MT
αn̂Mn̂n̂Mn̂α

)−1
〉
n̂
. (82)

If n̂ is unknown, a natural prior is the uniform distribution over the Bloch sphere.
In summary, Iα,eff is useful under two simultaneous conditions: (i) The QFIM does not exhibit the block-diagonal

structure in Eq. (81). (ii) The metrologist estimating α does not know the values of θ and ϕ. The entanglement-free
experiment depicted in Fig. 3(c) meets condition (i). Condition (ii) is an assumption introduced in this supplementary
note so that we can fairly compare the entanglement-free strategy with positronium metrology, in which n̂ is unknown.
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B. Calculation of the effective QFI achievable without knowledge of the field direction

We now apply the QFIM’s properties to assess the entanglement-free antimatter strategy applicable without knowl-
edge of n̂. As detailed earlier, the entanglement-free protocol begins with the qubit–antiqubit pair in the state
|x+⟩q ⊗ |z+⟩q̄. The external field evolves the state to

|ψα⟩ = Uα |x+⟩q ⊗ U†
α |z+⟩q̄ . (83)

Every product state’s QFIM is additive [66]:

M (|ψα⟩) = M
(
Uα|x+⟩q

)
+M

(
U†
α|z+⟩q̄

)
. (84)

We can calculateM(Uα|x+⟩q) andM(U†
α|z+⟩q̄) straightforwardly. They reveal thatM(|ψα⟩) has nonzero off-diagonal

elements. They encode correlations between α and the nuisance parameters. These correlations confirm the usefulness
of the effective QFI, Iα,eff [Eq. (82)].
To calculate Iα,eff , we calculate (M−1)αα . Its value follows from Eq. (84), which we can evaluate straightforwardly:

(M−1)αα =
1

8

[
7 + cos(2θ) + 2 cos(2ϕ) sin2(θ)

]
. (85)

Because n̂ is unknown, we average (M−1)αα uniformly over the possible field directions n̂. Denote this average by
⟨·⟩n̂. To evaluate it, we integrate each side of Eq. (85) over the unit sphere:

〈(
M−1

)
αα

〉
n̂
=

1

4π

∫ 2π

0

∫ π

0

(
M−1

)
αα

sin(θ) dθ dϕ =
5

6
. (86)

By the quantum Cramér-Rao bound [Eq. (77)],

⟨Var(α)⟩n̂ ≥
〈
(M−1)αα

〉
n̂
=

5

6
. (87)

The effective QFI follows from Eq. (82):

Iα,eff =
[〈
(M−1)αα

〉
n̂

]−1
=

(
5

6

)−1

=
6

5
= 1.2. (88)

This effective QFI is slightly lower than the optimal QFI achievable without entanglement but with a space–time
volume vst = 2, 4/3 ≈ 1.33. One can achieve this optimal QFI using a tensor product of two copies of the optimal
input state used when the probe consists of just one qubit. This state is a mixture of three mutually unbiased states
(Suppl. Note C.4 of [72]). One should expect our experiment’s entanglement-free strategy to perform suboptimally,
since the QFIM (84) is not diagonal.

Finally, we compare the entanglement-free synthetic-antimatter strategy with positronium metrology. Positronium
metrology achieves a QFIM the form (81), and Iα = 4. By Eq. (88), entanglement enhances the achievable precision
significantly.

III. EXPERIMENTAL REALIZATION OF QUBITS AND ANTIQUBITS

This supplementary note reviews the two strategies we employ to realize antiqubits. As discussed in the main text,
we apply Z gates to q̄ to effectively reverse the rotation induced by the field’s x- and y-components. Supplementary
Note IVB details the Z-gate implementation. We induce the field’s z-component using an AC Stark shift with a
frequency chosen such that δq = −δq̄. This choice causes q and q̄ to rotate about the z-axis oppositely.

To begin, we calculate the AC Stark shifts conferred upon q and q̄ by an off-resonant drive. Recall that the qubit
has a frequency ωq. Denote by αq the qubit’s anharmonicity, the difference (gap between second and third energy
levels)−(gap between first and second energy levels). Consider subjecting the qubit to an oscillating external field of
amplitude Ωs and frequency ωs. The field has a detuning ∆qs := ωq − ωs. The qubit acquires an AC Stark shift [73]

δq =
αq Ω

2
s

2∆qs(αq +∆qs)
. (89)
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ωq,q̄,c/(2π) (GHz) α/(2π) (MHz) Resonator (GHz) T1 (µs) T ∗
2 (µs)

Qubit 4.16748 −146.916 6.69 28 35

Antiqubit 4.27398 −144.658 6.88 17 22

Coupler 5.24975 −152.384 7.08 14 16

TABLE I. Device parameters.

The antiqubit obeys an analogous result. q and q̄ have different frequencies, so a “magic” drive frequency induces equal-
magnitude, opposite-sign Stark shifts on the transmons. Every magic frequency depends on the device parameters.
Table I specifies the parameters’ values. Two drive frequencies enable δq = −δq̄; one is 4.19742 GHz. During the
experimental calibration, we found that δq = −δq̄ at 4.176998 GHz. The inferred magic frequency differs slightly from
the prediction because q and q̄ experience different field amplitudes: q̄ experiences a field strength that is ≈ 1.78
times larger. In Fig. 2(f), the tick marks along the x-axis show the Ωs values (the drive amplitudes experienced by
q) inferred from Eq. (89). The inferred magic frequency is scarcely detuned from the qubit’s transition frequency:
∆qs/(2π) = −9.52 MHz. Therefore, the oscillating field does not only induce δq and δq̄. Also, the field drives off-
resonant rotations about the qubit’s x- or y-axis, depending on the drive’s phase. These imperfections imprint in
Fig. 3(d), in the gray disks inferred after rotations about the z-axis. The gray disks approximately form a curve that
wobbles more than the figure’s other approximate curves.

We infer the AC Stark shift by performing simultaneous Ramsey measurements on q and q̄. To do so, we rotate
each transmon through an angle π/2 about the x̂-axis. Then, we apply the Stark tone to the readout driveline for
an amount of time that varies from batch of trials to batch of trials. Each transmon then undergoes another π/2
rotation about a different axis (relative to the first π/2 rotation) to produce a synthetic detuning. Finally, we read
out the transmons’ states. Figure 2(e) displays the measured frequency shifts, as well as theoretical predictions.
Using the measured data, we identified a magic frequency. To obtain the results in Fig. 3, we used frequency shifts
|δj | = Ωx = Ωy = 2π(2.13 MHz), wherein j ∈ {q, q̄}. To rotate each transmon through an angle α ∈ [0, 2π], we drove
them for amounts of time ∈ [0, 470] ns.

IV. EXPERIMENTAL SETUP

The experiments were performed on a superconducting device with three transmon circuits. Table I specifies
the device parameters. We denote the qubit transmon by q; the antiqubit, by q̄; and the coupler, by c. The
qubit’s frequency is fixed, whereas c and q̄ are flux-tunable. We operate c and q̄ with net zero flux threading their
superconducting-quantum-interference-device (SQUID) loops. Each transmon has a ground state |g⟩, first excited
state |e⟩, and second excited state |f⟩. Dispersively coupled readout resonators read out all the transmons’ states.
The device was fabricated in the SQUILL foundry at MIT Lincoln Laboratory [74]. We mounted the device on a
dilution refrigerator’s mixing-chamber stage, with attenuated coaxial lines for implementing qubit drives and flux
biases. Reference [75] provides details about the overall setup at the hardware level.

A. Dispersive readout

The qubit and antiqubit couple to their respective readout resonators [76] dispersively. We can thereby perform
simultaneous high-fidelity single-shot readouts [77]. Our readout scheme is heterodyne: we multiplex the readout signal
by simultaneously sending in two pulses that have different frequencies. We separate the two readouts in the frequency
domain for processing. To implement low-noise amplification, we use a traveling-wave parametric amplifier based on
SNAILs (Superconducting Nonlinear Asymmetric Inductive eLements) [78]. To increase the signal-to-noise ratio, we
apply π-pulses that promote q and q̄ from their |e⟩ to the |f⟩ levels. We optimize the readout signal-to-noise ratio
over readout amplitude, frequency, and amplifier-bias settings, using a gradient-free optimization algorithm [79]. We
construct the multicomponent-pulse-integration envelopes via linear-discriminant analysis and principal-component
analysis. Ultimately, we achieve a qubit-readout fidelity of 97.8 % and an antiqubit-readout fidelity of 95.0 %, using a
random forest classifier [80]. After this calibration, we correct all tomography results for the finite readout fidelities,
using the iterative Bayesian-update correction method [81].



22

B. Single-qubit rotations

We use four types of single-qubit rotations in this project:

• Single-qubit π/2 rotations: We use π/2 rotations about the x- and y-axes in quantum state tomography and
in the arbitrary-axis rotations detailed below. Each π/2 rotation lasts for 44 ns. We construct pulse envelopes
from cosine waveforms. As a function of the time t (expressed in ns), the pulse waveform has the form ∝
[cos(2πt/(44 ns)− π) + 1]. We estimate these gates’ fidelity to be 98.8 %.

• Single-qubit π rotations: We implement these rotations in the same manner as the π/2 rotations. However,
each pulse lasts for 88 ns.

• Single-qubit π rotations in the {|e⟩ , |f⟩} manifold: These rotations are implemented in the same manner as the
{|g⟩ , |e⟩} rotations described in the previous two bullet points. The π/2 gates last for 32 ns each; and the π
gates, 64 ns.

• Single-qubit rotations about the z-axis, through arbitrary angles α: Denote by R(β, ϕ) a rotation through an
angle β about the (cos(ϕ) x̂+sin(ϕ) ŷ)-axis. The corresponding rotation operator is represented by the matrix,
relative to the Z-eigenbasis,

R(β, ϕ) =

 cos
(
β
2

)
−ie−iϕ sin

(
β
2

)
−ieiϕ sin

(
β
2

)
cos

(
β
2

)  . (90)

In terms of this rotation, we define the physical rotation through an angle α about the z-axis,

Rz(α) = R
(
π,
α

2

)
R (π, 0) . (91)

(92)

C. Parametric gates

We implement parametric gates by modulating the coupler’s frequency: define ∆q̄q ≡ ωq̄ − ωq. We apply a
microwave tone to c’s fast flux line at a frequency ∆q̄q/2, modulating c’s energy gaps. Denote the modulation depth
by α. The coupler’s time-dependent frequency is ω̃c(t) = ωc −α cos2(∆q̄qt/2). During this modulation, q and q̄ come
into parametric resonance. When calibrated, the parametric resonance induces qubit–antiqubit coupling at a rate of
54.0 MHz. At this rate, an

√
iSWAP gate lasts 104 ns.

We estimate the gate’s fidelity using quantum state tomography. To do so, we measure the expectation values of
9 two-Pauli products: ⟨σqσq̄⟩. We use maximum-likelihood estimation to infer the qubit–antiqubit density matrix’s
components [82].

We implement as follows the protocol shown in Fig. 3(a). To prepare an entangled state, we perform one
√
iSWAP

gate. Then, we projectively measure whether the system is in a singlet, |Ψ−⟩. That is, we measure {Π0,1 − Π0}
(as in the main text, Π0 := |Ψ−⟩⟨Ψ−|). To measure this POVM, we apply a second

√
iSWAP gate, which maps

the singlet to |g⟩q |e⟩q̄. The qubits have different energies, so they accumulate different relative phases between the

two
√
iSWAP gates. To remove this phase difference, we apply another physical rotation to the antiqubit before the

second
√
iSWAP gate. We implement this phase correction with the physical rotation (91) described above.
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