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Studying noncommuting conserved quantities (or ‘charges’) has produced a conceptual puzzle.
Recent results suggest that noncommuting charges hinder thermalization in some ways, yet pro-
mote it in others. To help resolve this puzzle, we demonstrate how noncommuting charges can
promote thermalization by reducing the number of local observables that thermalize according to
the Eigenstate Thermalization Hypothesis. We first establish a correspondence between charges and
sufficient conditions for observables to not thermalize. These conditions are known as ‘dynamical
symmetries.’ We demonstrate that for each pair of dynamical symmetries a Hamiltonian has, there
exists a corresponding charge. We prove that the reciprocal relationship holds for a broad range of
charges. From this correspondence, we demonstrate that introducing a new charge to a system can
either contribute to or disrupt its existing non-stationary dynamics. If the new charge commutes
with existing ones, the system’s non-stationary dynamics remain intact, and new ones emerge; if not,
the existing non-stationary dynamics are removed. We illustrate our results using variou models.
Our results demonstrate a facet of thermalization which noncommuting charges promote.

I. INTRODUCTION

How do isolated quantum many-body systems come to
thermal equilibrium? This question is largely answered
by the eigenstate thermalization hypothesis (ETH) [1, 2].
Consider a set of local observables Oi, an initial pure
state1 |ψ⟩ governed by a Hamiltonian H, and the corre-
sponding expectation values ⟨Oi(t)⟩. We say a system is
in thermal equilibrium at time t if ⟨Oi(t)⟩ ≈ ⟨Oi⟩th :=
tr[ρthOi] for each Oi, where ρth is the thermal state with
temperature fixed by the energy of the initial state. If the
Hamiltonian and local observables satisfy the ETH, the
system will thermalize in this sense. Despite the appar-
ent tension between unitary dynamics and thermaliza-
tion, most quantum many-body systems thermalize [3].

A puzzle related to thermalization has emerged from
the study of noncommuting charges [4–7]. Traditionally,
it was assumed that conserved quantities, or ‘charges’,
would commute, a premise underlying derivations of the
thermal state’s form [5–8], Onsager coefficients [9], and
ETH [10]. However, in quantum theory, the noncom-
mutation of observables is central, playing a key role
in uncertainty relations [11, 12], measurement distur-
bance [13, 14], and tests of quantum theory [15–18].
Therefor, removing this assumption is vital and has
catalyzed new results in quantum thermodynamics and
many-body physics. Noncommuting charges can, for ex-
ample, increase average entanglement [19], invoke critical
dynamics [20], and decrease the rate of entropy produc-
tion [21, 22]. Additionally, noncommuting charges im-
pose stricter constraints on the implementable unitaries
than commuting charges do [23] and, based on a phyically

∗ smajidy@uwaterloo.ca
1 Having a pure initial state is not necessary for the ETH. However,
the paradox of unitary dynamics leading to thermalization is
most pronounced in pure states; therefore, we consider them.

plausible assumption, lead to larger deviations from the
thermal state [10].
The results above present an interesting puzzle: non-

commuting charges appear to both hinder and promote
thermalization in different contexts [4, 19]. This di-
chotomy is theoretically intriguing and may have impli-
cations for quantum technologies. The main challenge in
developing scalable quantum computers is mitigating de-
coherence [24–26], with thermalization being a significant
cause. If systems with noncommuting charges resist ther-
malization, they could contribute to more decoherence-
resistant quantum technologies. Systems with noncom-
muting charges, such as spin systems [10, 19, 27, 28] and
squeezed states [9, 22], are naturally present in quantum
computing methods, like quantum dot [29] and optical
approaches [30]. This potential is further supported by
recent advances showing that non-Abelian symmetric op-
erations are universal for quantum computing [31, 32].
To help resolve this puzzle, we aim to connect non-

commuting charges and conditions that lead to violations
of the ETH. Buča et al. [33] proposed a set of condi-
tions wherein if an operator A satisfies [H,A] = λA with
λ ∈ R and λ ̸= 0, then any local operator Oi overlapping
with A (i.e., tr[OiA] ̸= 0) will not thermalize, displaying
non-stationary dynamics in violation of the ETH [33].
These operators, A, are referred to as dynamical symme-
tries’ [33–36] or spectrum generating algebras’ [37].2 Dy-
namical symmetries represent a departure from the con-
ventional definition of ‘symmetry’ as an invariance under
a transformation. Therefore, the link between dynami-
cal symmetries and charges is not directly established by
Noether’s theorem. These symmetries prevent a quan-
tum many-body system from reaching a stationary state,

2 The terms ’dynamical symmetry’ and ’spectrum generating al-
gebra’ encompass a range of related concepts [38, 39]. In this
paper, we specifically refer to the condition previously stated.
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Figure 1: Introducing charges into systems with
existing dynamical symmetries. A system with
commuting charges {Qα} possesses paired dynamical
symmetries {A±α}. Altering the system’s Hamiltonian to
conserve non-commuting charges {Qβ} relative to {Qα} will
result in the loss of some or all dynamical symmetries
{A±α}. Conversely, a different modification that introduces
new commuting charges will bring associated dynamical
symmetries. These new charges have no algebraic
relationship with the initial charges, suggesting an increase
in the system’s dynamical symmetries.

affecting both open [33, 40, 41] and closed [34] quan-
tum systems. Dynamical symmetries can be responsible
for the non-stationary dynamics seen in systems such as
quantum time crystals [34], OTO crystals [42], and quan-
tum attractors [43].

Our primary finding is the correlation between charges
and dynamical symmetries. We establish that for each
pair of dynamical symmetries, there exists a correspond-
ing charge, and we detail the method for deriving this
charge from the dynamical symmetries. Additionally, we
confirm that this reciprocal relationship extends to a wide
range of charges. This correlation illustrates that even a
single charge can cause a violation of the ETH. Through
this framework, we show that introducing a new charge to
a system can either enhance or disrupt its non-stationary
dynamics. Specifically, if the new charge commutes with
the existing ones, it will preserve the current dynamical
symmetries and introduce new ones. Conversely, if the
new charge does not commute, it will reduce the number
of dynamical symmetries. Figure 1 encapsulates these
findings. Our analyses reveal a fundamental tension be-
tween noncommuting charges and dynamical symmetries,
and highlights that the introduction of additional conser-
vation laws can drive a system towards thermalization.

Dynamical symmetries are also linked to quantum
scars, a class of eigenstates that do not thermalize [44–
47]. Ref.[48] describes creating Hamiltonians with quan-
tum scars by altering a non-Abelian symmetric Hamil-
tonian with a dynamical symmetry-based term. Our re-
search contrasts this by examining how noncommuting
and commuting charges affect various systems’ dynamical
symmetries and establishing a related correspondence.

Unlike the quantum scar focus, our analysis targets local
observables and can naturally extend beyond Hamilto-
nians to Lindbladians, since noncommuting charges and
dynamical symmetries are relevant in both closed and
open systems [33, 40, 41, 49]. Future connections are
explored in the Outlook section (Sec. V).
The manuscript is structured as follows: Section

II reviews the ETH, dynamical symmetries, and non-
commuting charges. In Section III, we introduce our
first main result, detailing the correspondence between
dynamical symmetries and charges. Section IV discusses
our second result, which shows how introducing a new
charge to a system affects its non-stationary dynamics,
contingent on the commutation with existing charges, il-
lustrated through various examples. The conclusion in
Section V connects our findings with existing research
and outlines directions for future work.

II. BACKGROUND

Consider a closed quantum system consisting of a lat-
tice with N sites. Each site corresponds to a Hilbert
space H of finite dimensionality d. The system is gov-
erned by a Hamiltonian H =

∑
k Ek |ψk⟩⟨ψk|, where |ψk⟩

are energy eigenstates with energies Ek. The time depen-
dent state |Φ(t)⟩ =

∑
k exp(−iEkt)ck |ψk⟩ will have fixed

total energy E = ⟨Φ(t)|H|Φ(t)⟩, where we set ℏ = 1.
The expectation value of an observable O for the state
|Φ(t)⟩ is

⟨O(t)⟩ =
∑
j,k

e−i(Ek−Ej)tc∗jck ⟨ψj |O|ψk⟩ . (1)

⟨O⟩th := tr[ρthO] is the thermal expectation value where
ρth is the thermal state. If an out-of-equilibrium |Φ(0)⟩
thermalizes, we expect ⟨O(t)⟩ to approach ⟨O⟩th,

⟨O(t→ ∞)⟩ = ⟨O⟩th + C, (2)

where C accounts for fluctuations. The ETH gives a set
of conditions for which this expectation holds.

Systems with dynamical symmetries violate the
ETH [33, 35]. Dynamical symmetries can, for example,
lead Heisenberg XXZ spin-chains to behave as quantum
time crystals [34] and spin lace systems to behave as
quantum many-body attractors [43]. We denote a dy-
namical symmetry by a non-Hermitian operator A, such
that

[H,A] = λA, (3)

where λ is a real and non-zero constant. We assume
that A is extensive, by restricting it to have the form

A =
∑N

j=1 Ã
(j), where Ã(j) is an operator that acts non-

trivially on 1 site and as the identity on all other sites.
Furthermore, for every dynamical symmetry A, there ex-
ists another A†,

[
H,A†] = −λA†. Thus, dynamical sym-

metries always come in pairs. A system can have mul-
tiple pairs of dynamical symmetries. In that case, we
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add subscripts as follows [H,Aβ ] = λβAβ . Furthermore,

we define A+β := Aβ and A−β := A†
β . The expectation

value of an observable O that overlaps with one dynam-
ical symmetry, tr[AO] ̸= 0, will continue to change in
time.

Finally, we introduce noncommuting charges. Charges
are Hermitian operators that commute with the Hamil-
tonian, [H,Q] = 0. A system can have multiple charges,
that we distinguish with Greek letter subscripts, and
these charges can be noncommuting, [Qα, Qβ ] ̸= 0. For
physically motivated reasons, we add a third condition
to hermiticity and commutation. Let Q̃α denote a Her-

mitian operator defined on H. We denote by Q̃
(j)
α the

Q̃α defined on the jth subsystem’s H. We denote an
extensive observable

Qα :=

N∑
j=1

Q̃(j)
α ≡

N∑
j=1

1
⊗(j−1) ⊗ Q̃(j)

α ⊗ 1
⊗(N−j). (4)

Our third condition is that the charges are extensive.
While this work focuses on closed quantum systems, non-
commuting charges and dynamical symmetries can also
exist in open quantum systems [33, 40, 41, 49].

III. CORRESPONDENCE BETWEEN
CHARGES AND DYNAMICAL SYMMETRIES

In this section, we present a correspondence between
the existence of charges and dynamical symmetries. This
correspondence is in the form of two theorems. One the-
orem identifies a charge from pairs of dynamical symme-
tries. The other theorem identifies a pair of dynamical
symmetries from charges. We first prove this correspon-
dence (Sec. III A) before illustrating it using the Hubbard
model (Sec. III B).

III A. Correspondence

Charges Qα that generate Lie algebras are important
in physics because they describe, for example, angu-
lar momentum, particle number, electric charge, color
charge, and weak isospin [4, 50–52], i.e., everything in
the Standard Model of particle physics. The Lie al-
gebras relevant to studying noncommuting charges are
finite-dimensional because we study systems with a fi-
nite number of linearly independent charges [28]. The
algebras are also defined over the complex number be-
cause the operators are Hermitian. Finally, the algebras
are semisimple so that the operator representation of the
charges can be diagonalized (not necessarily simultane-
ously diagonalized) [53]. Many physically significant al-
gebras satisfy these conditions, such as su(N), so(N),
and all simple Lie algebras. From this point onward, we
denote by g a finite-dimensional semisimple complex Lie
algebra.

The results of this paper apply to all of the charges
mentioned above and others, which we will now intro-
duce. An algebra’s dimension c equals the number of
generators in a basis for the algebra. The algebra’s rank
r is the dimension of the algebra’s maximal commuting
subalgebra, the largest subalgebra in which all of the el-
ements are commuting. For example, consider the usual
basis for su(2)—the Pauli-operators {σx, σy, σz}. There
are three generators in this basis, so c = 3, and none of
these operators commute with one another, so r = 1. A
Cartan subalgebra is a maximal Abelian subalgebra con-
sisting of semisimple elements, h ∈ h. From this point
onward, we denote by h a Cartan subalgebra of a g. Ev-
ery g will have a h. Our results apply to all sets of charges
{Qα} that can be partitioned into subsets such that each
subset generates a g or a h. Note that this includes all
sets {Qα} that generate a g and all sets {Qα} that gen-
erate a h, even if they may not generate a full g. This
is a wide class that includes, for example, everything in
the Standard Model of physics and the charges of the
Hubbard, Ising, and Heisenberg models.

Essential to our study are Cartan-Weyl bases [53]. The
g definition includes a vector space V defined over a field
F . A form is a map V ×V → F . The Killing form of op-
erators x, y ∈ g is the bilinear form (x, y) := tr(adx · ady)
where adx is the image of x under the adjoint representa-
tion of g. Let β(h) := (h′β , h) where h, h

′
β ∈ h. β(h) is a

root of g relative to h if there exists a non-zero operator
Xβ ∈ g such that

[h,Xβ ] = β(h)Xβ . (5)

These operators Xβ are called root vectors. Denote by ∆
all roots of g with respect to h. If β ∈ ∆, then so is −β.
Thus, root vectors always come in pairs X±β . Finally,
one can identify different Cartan-Weyl bases for each g.
A Cartan-Weyl basis consists of a Cartan subalgebra h
and one or more pairs of root vectors X±β . The choice
of Cartan-Weyl is not unique.

We highlight additional features of root vectors which
are important to this work. For all root vectors
[X+β , X−β ] ∈ h (Proposition 7.17 of Ref. [54]). X±β

can always be chosen such that X+β = X†
−β (p. 273 of

Ref. [55]). It follows then that

([Xβ , X−β ])
†
= [Xβ , X−β ] (6)

and that

[X+β , [H, X−β ]] = ([X−β , [H, X+β ]])
†

(7)

where H is any Hermitian operator.

Theorem 1. For every pair of dynamical symmetries
A±β that a Hamiltonian has, there exists a charge Qβ =
[A+β , A−β ].

Proof. For Qβ to be a charge, it must be conserved by
the Hamiltonian, a Hermitian operator, and extensive.
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Using the Jacobi identity, Eq. (6), and Eq. (7), we find
that

[H, [A+β , A−β ]] = [A+β , [H,A−β ]]− [A−β , [H,A+β ]]
(8)

= −λβ ([A+β , A−β ] + [A−β , A+β ]) (9)

= 0. (10)

Thus, the Hamiltonian conserves Qβ . For Qβ to be a
charge, it must also be Hermitian, which it is

Q†
β =

(
AβA

†
β −A†

βAβ

)†
(11)

=
(
AβA

†
β −A†

βAβ

)
= Qβ . (12)

Finally, recall that we are studying dynamical symme-
tries, which are k = 1 local. Thus, all Qβ = [A+β , A−β ]
will also be 1-local and are charges by our definition.

We say a set of dynamical symmetries ‘produces’ a set
of charges {Qβ} when the span of {Qβ} equals the span
of the set of charges found using Theorem 1.

Theorem 2. For every set of charges {Qβ} that form a
h of g, the root vectors that complete the Lie algebra are
dynamical symmetries of H.

Proof. Since the charges Qβ form a Cartan subalgebra
h of g, [H,h] = 0 for all h ∈ h. Thus, H ∈ h since
h is the maximal Abelian subalgebra. Recall that the
commutator of an element of the Cartan subalgebra with
a root vector equals the corresponding root times the root
vector, H ∈ h, [H,X+β ] = β(H)X+β . This immediately
has the form of a dynamical symmetry. Thus, all root
vectors of g are dynamically symmetries of H.

We say a set of charges ‘produces’ a set of dynamical
symmetries {A±β}, when {A±β} equals one set of dy-
namical symmetries that can be found using Theorem
2.

Theorem 2 is for a set of charges that form a h of g.
Any set of charges that generate a g can be partitioned
into c

r sets of mutually commuting charges [28]. Thus,
through the repeated application of Thm. 2, this theorem
can be used to study charges that generate g.

III B. Illustration using the Hubbard model

A simple setting to illustrate this correspondence is
the Hubbard model. We choose this model for various
reasons. First, it has been shown to demonstrate non-
stationary behaviour emerging from dynamical symme-
tries and the forms of the charges and dynamical sym-
metries are known [33]. Additionally, its two commuting
charges form separate h’s, illustrating the effect commut-
ing charges have on dynamical symmetries. Finally, it is

a physically important model—the prototypical model of
strongly correlated materials.

Consider a chain of N fermions. Denote by c
(j)†
σ and

c
(j)
σ the creation and annihilation operators for a fermion

of spin σ at lattice site j, σ ∈ {↑, ↓}. Denote by n
(j)
σ :=

c
(j)†
σ c

(j)
σ the number operator for fermions of spin σ at

lattice site j. The 1D Hubbard model’s Hamiltonian can
be written as

H =

N−1∑
j=1

∑
σ=↑,↓

−t
(
c(j)†σ c(j+1)

σ + c(j+1)†
σ c(j)σ

)
+ Un

(j)
↑ n

(j)
↓

− µ
(
n
(j)
↑ + n

(j)
↓

)
+
B

2

(
n
(j)
↑ − n

(j)
↓

)
, (13)

where t is the hopping parameter, U is the on-site
Coulomb interaction, µ is the chemical potential, and
B is the strength of a constant external magnetic field.
The Hubbard model has two pairs of dynamical sym-

metries [33]. The first pair are

Stot
+z =

L∑
j=1

c
(j)†
↑ c

(j)
↓ and Stot

−z =

L∑
j=1

c
(j)†
↓ c

(j)
↑ , (14)

and the second pair are

ηtot+z =

N∑
j=1

(−1)jc
(j)†
↑ c

(j)†
↓ and ηtot−z =

L∑
j=1

(−1)jc
(j)
↓ c

(j)
↑ .

(15)

Using theorem 1, we identify two charges:

[
Stot
+z , S

tot
−z

]
= Stot

z =

L∑
j=1

(
n
(j)
↑ − n

(j)
↓

)
, and (16)

[
ηtot+z , η

tot
−z

]
= ηtotz =

L∑
j=1

(n
(j)
↑ + n

(j)
↓ − 1). (17)

These charges are the two known charges of the sys-
tem [56].
Starting from the charges, we can also identify the dy-

namical symmetries using theorem 2. When B = 0 and
µ = 0, the Hubbard Hamiltonian contains two sets of
charges that generate su(2) [57]. For B ̸= 0 and µ ̸= 0,
the Hubbard model has two sets of charges that gener-
ate Cartan subalgebras of su(2). Each charge, Stot

z and
ηtotz , is an element in one of these algebras. We can use
these Cartan subalgebras to complete a Cartan-Weyl ba-
sis for su(2). Doing so, we find two sets of generators
{Stot

z , Stot
+z , S

tot
−z} and {ηtotz , ηtot+z , η

tot
−z}. This demonstrates

how Cartan-Weyl bases can be used to identify the dy-
namical symmetries from the charges.

IV. NONCOMMUTING CHARGES’ EFFECT
ON DYNAMICAL SYMMETRIES

In this section, we consider the following setting. We
begin with a system that has a set of charges {Qα} that,
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according to theorem 2, produce dynamical symmetries
{A±α′}. This system experiences non-stationary dynam-
ics in all observables O that overlap with any elements in
{A±α′}. We then introduce one or more charges into the
system. This introduction of charge(s) can either add
to or disrupt its existing non-stationary dynamics. A
summary of this section’s result are presented in Fig. 1.
First, to be mathematically rigorous, we formalize our
procedure for introducing charges in Sec. IV A. Our pro-
cedure highlights why there is a difference in the com-
muting and noncommuting charge cases. In Sec. IV B,
we illustrate this procedure using charges that generates
a Cartan subalgebra of su(2) and to charges that gener-
ate su(2). We do the same analysis in Sec. IV C for the
su(3) algebra. These sections further demonstrate the
difference in introducing commuting and noncommuting
charges. We conclude by presenting Hamiltonians in Sec-
tion IV D that can be used explore the distinction be-
tween commuting and noncommuting charges. This con-
nection aims to link our findings with experimental tests
and related research on quantum scars.

IV A. Procedure

Consider a system with a set of charges {Qα} that can
be partitioned into subsets such that each subset gener-
ates a g or a h. In the earlier Hubbard model example, we
had two subsets that each generate a h (Stot

z and ηtotz ).
We want a procedure to identify a system’s dynamical
symmetries from these charges. Below is a procedure to
do so for one of the subsets. The subset of charges gen-
erates a h in ‘scenario 1’ and a g in ‘scenario 2’.

1. Partition the system’s c charges into c
r sets of mu-

tually commuting charges. In scenario 1, this will
be all the charges. In scenario 2, such a partition
always exists and generates a h [28].

2. Select any one of h’s identified in step 1.

3. Construct a Cartan-Weyl basis by adding to h c−r
2

pairs of root vectors, X±β .

4. According to Theorem 2, these pairs of root vec-
tors are dynamical symmetries. We add them
to our list of the system’s dynamical symmetries,
A±β := X±β . The values of λβ can be deter-
mined in two ways. One is that they are equal
to the roots of g relative to h for a given charge
Q′

α ∈ h′. Thus, one can solve for β(h) and set
λβ equal to that. Alternatively, one can explicitly
solve for [H,Aβ ] = λβAβ . The specific g will deter-
mine which is simpler to do.

5. For scenario 1, the procedure ends here. For sce-
nario 2, select a different one of the c

r Cartan sub-
algebras identified in step 1. Verify whether includ-
ing the new charges removes any of the dynamical
symmetries found earlier.

6. Repeat steps 3 to 5 until no further Cartan subal-
gebras remain.

One can then repeat this procedure for each of the subsets
mentioned above. For each set of charges, this procedure
identifies c

r (c− r) dynamical symmetries of the system
from c charges.
The procedure can naturally be reversed using Theo-

rem 1, where one identifies a charge from each pair of dy-
namical symmetries. The reverse procedure uses c

r (c−r)
dynamical symmetries to identify c

2r (c−r) charges. This
is because the charges identified in the reverse procedure
are generally not linearly independent. The linear inde-
pendence of charges Qα generating a Lie algebra g can
be assessed by computing the Killing forms between all
pairs of Qα. These charges are linearly independent if
all the Killing forms are 0 [28]. However, from a linearly
dependent set of charges, one can easily form a linearly
independent set by summing over different charges.
In our framework, charges can commute in two ways.

First, they may be components of distinct algebras, as
exemplified in the Hubbard model. Alternatively, they
can belong to the same Cartan subalgebra, h, which will
be illustrated with the su(3) example. In this scenario,
the procedure adds dynamical symmetries for the charges
at Step 4. It is important to remember that root vec-
tors are associated with specific charges, as indicated in
Eq. (5). For clarity, we can deconstruct this step by se-
quentially integrating the dynamical symmetries for each
charge within h. This approach elucidates that introduc-
ing a new charge preserves the dynamical symmetries
established by the preceding charges.
Charges noncommutation enters the picture in step 5.

If the charges generate a g, there is the possibility that
the full set of charges does not commute. The Cartan-
Weyl basis is a basis for g. The charges also form a
basis for g. Thus, the elements of the Cartan-Weyl ba-
sis can be written in the basis of the charges, i.e., the
dynamical symmetries can be written as a linear com-
bination of charges. Thus, if the Hamiltonian commutes
with more charges, it will commute with more dynamical
symmetries. This mechanism explains how introducing
noncommuting charges leads to the removal of existing
dynamical symmetries.

IV B. Illustration using su(2)

First, we consider charges represented by su(2).
{σx, σy, σz} are the usual Pauli operators. Consider

again a system of N sites. We denote by σ
(j)
α a Pauli

operator acting on the jth site. We define the operators

Stot
α :=

∑N
j=1 σ

(j)
α . If we were studying the full algebra,

we would have three charges that are the components of
the spin- 12 angular momentum.
First, we will consider having a single Cartan subalge-

bra and return to the full algebra later. The system has
c = 3 and r = 1. Thus, its maximal Abelian subalgebra
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will have one element. To be concrete, we choose this
element to be Stot

z . Next, we complete the Cartan-Weyl
basis by identifying the root vectors of the algebra, which
are

Stot
±z =

N∑
j=1

1
⊗(j−1) ⊗ S

(j)
±z ⊗ 1

⊗(N−j) ≡
N∑
j=1

S
(j)
±z (18)

where S±z = 1
2 (σx ± iσy). Starting from the system’s

charge, we identified two dynamical symmetries. Like
with the Hubbard model, it is straightforward to reverse
this procedure. Doing so, we check that [S+z, S−z] = Sz,
and thus

[
Stot
+z , S

tot
−z

]
= Stot

z .
The system described above has one charge and one

pair of dynamical symmetries. We now want to intro-
duce another charge that does not commute with the
existing one, such as Stot

x . However, a Hamiltonian that
conserves two charges of su(2) will necessarily conserve all
three [28]. Thus, we introduce two more charges into the
system, thereby applying the the procedure from Sec. IV
A for su(2). The first round of steps 1 to 4 for find-
ing the dynamical symmetries of the full su(2) is equiva-
lent to finding the dynamical symmetries of one Cartan
subalgebra of su(2). To complete su(2), we include Stot

x

and Stot
y as charges. Say we did not check whether these

new charges remove earlier dynamical symmetries in step
5. We would then choose one of these two charges and
repeat steps 1 to 4. Doing so we would find the dy-

namical symmetries Stot
±α =

∑N
j=1 S

(j)
±α for α = x and y,

where S±x = 1
2 (σz ∓ iσy) and S±y = 1

2 (σz ± iσx). It

is straightforward to check that
[
Stot
+x, S

tot
−x

]
= Stot

x and[
Stot
+y , S

tot
−y

]
= Stot

y . If we did these steps for both ad-
ditional charges, we would have identified c

r (c− r) = 6
dynamical symmetries. However, we find a different story
when we do check whether the additional charge removes
any of the previous dynamical symmetries (see step 5).
Introducing the charges means that the Hamiltonian now
commutes with Stot

±x and Stot
±y , and thus also commutes

with Stot
±z . The three conservation laws together elimi-

nate all six dynamical symmetries we listed above. This
example contrasts with the Hubbard model where the
dynamical symmetries of Stot

±z could coexist with that of
another charge that commutes with Stot

±z .

IV C. Illustration using su(3)

To demonstrate the second way charges can commute
in our construction—from being part of the same Cartan
subalgebra—we turn to su(3). su(3) has dimension c = 8
and rank r = 2. Thus, our system has eight charges
that we can partition c

r = 4 sets of mutually commuting
charges. These sets generate Cartan subalgebras. The
eight charges of su(3) can be represented by the Gell–
Mann matrices [58], τi for i = 1 to 8.
We begin with one Cartan sublagebra of su(3). For

example, take the Cartan subalgebra with τ3 and τ8. In

the three-dimensional representation of su(3), these op-
erators can be represented with

τ3 =

1 0 0
0 −1 0
0 0 0

 and τ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 . (19)

As before, our charges will be sums over these operators

on each site, Q1 =
∑N

j=1 τ
(j)
3 and Q2 =

∑N
j=1 τ

(j)
9 . Us-

ing this Cartan subalgebra, we construct a Cartan-Weyl
basis. This requires identifying c−r

2 = 3 pairs of root vec-
tors. We define the following operators, A+1 := τ1 + iτ2,
A+2 := τ4 + iτ5, and A+3 := τ6 + iτ7. These operators
and their Hermitian conjugates are the root vectors. As
we did in the previous example, we can construct the dy-
namical symmetries by taking sums over the operators on

each site in our chain, Atot
±β :=

∑N
j=1A

(j)
±β . Thus, we have

again found the dynamical symmetries from the charges.
We could reverse this procedure to find the charges

generated by these dynamical symmetries. We do this
explicitly to point out an effect not observed in the su(2)
cases. We identify the operators,

Q1 = c1[A+1, A−1] =
1√
2

1 0 0
0 −1 0
0 0 0

 , (20)

Q2̃ = c2[A+2, A−2] =
1√
2

1 0 0
0 0 0
0 0 −1

 , and (21)

Q3̃ = c3[A+3, A−3] =
1√
2

0 0 0
0 1 0
0 0 −1

 . (22)

Note that they are not linearly independent, since not all
of the Killing forms between all pairs are zero: (Q1, Q2̃) =
3, (Q1, Q3̃) = −3, and (Q2̃, Q3̃) = 3. A Cartan subalge-
bra basis will require two charges. Thus, we sum over
two of these three operators. We are free to do so in
different ways. The choice that recovers the original two
operators we began the procedure with is summing over
charges Q2̃ and Q3̃: Q2 = 1√

3
(Q2̃ +Q3̃).

The system described above has two charges and three
pairs of dynamical symmetries. We now want to intro-
duce others charges that does not commute with the ex-
isting ones, i.e., more of the charges that generate su(3).
However, recall the dynamical symmetries for τ3 and τ8
are linear combinations of the other six Gell–Mann ma-
trices. If the Hamiltonian now commutes with any el-
ements from other Cartan subalgebras of su(3), it will
stop some combination of A1, A2, and A3 from being dy-
namical symmetries. If the Hamiltonian commutes with
all of su(3)’s charges, it will nullify all of the system’s
dynamical symmetries.

IV D. Hamiltonians

Although the primary aim of this study is not to con-
struct Hamiltonians, we include some examples to link
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our findings with physically viable systems and establish
a connection with research on quantum scars [48]. We
start with the su(2) case, illustrating how various Hamil-
tonians can transition from a single charge forming a Car-
tan subalgebra of su(2) (U(1) symmetry) to three charges
constituting the full algebra (SU(2) symmetry). An ex-
ample of this is the Heisenberg model under an external
field,

HH =
B

2

( N∑
j=1

σ(j)
z

)
+
J

2

( ∑
⟨j,k⟩

∑
⟨⟨j,k⟩⟩

σ(j)
x σ(k)

x + σ(j)
y σ(k)

y

+ σ(j)
z σ(k)

z

)
, (23)

where ⟨j, k⟩ indicates the sum over nearest neighbours,
⟨⟨j, k⟩⟩ indicates the sum is over next-nearest neighbours,
B is the strength of an external magnetic field, and J is a
coupling constant. For B ̸= 0, the system has one charge
corresponding to a Cartan Subalgebra of su(2) and one
pair of dynamical symmetries. By setting B = 0, we
introduce two more noncommuting charges into the sys-
tem at the cost of removing the dynamical symmetries.
We included the next-nearest neighbour interaction to
break integrability. Alternatively, we could construct our
Hamiltonian from genuine three-body interactions that
are SU(2)-symmetric, such as

σ(j)
x σ(j+1)

y σ(j+2)
z + σ(j)

y σ(j+1)
z σ(j+2)

x + σ(j)
z σ(j+1)

x σ(j+2)
y

−σ(j)
z σ(j+1)

y σ(j+2)
x − σ(j)

x σ(j+1)
z σ(j+2)

y − σ(j)
y σ(j+1)

x σ(j+2)
z

(24)

and again break the symmetry with an external field.
We can similarly study Hamiltonians for the su(3) ex-

ample. These Hamiltonians are less familiar but can be
found using the procedure in Ref. [28],

H =
J

2

(∑
α

∑
⟨j,k⟩

∑
⟨⟨j,k⟩⟩

τ (j)α τ (k)α

)
+
B1

2

(∑
j

τ
(j)
3

)
+
B2

2

(∑
j

τ
(j)
8

)
. (25)

The noncommuting charges give way for dynamical sym-
metries by setting B1 and B2 to zero.These Hamilto-
nians align with the framework presented in Ref. [48],
where the introduction of the external field breaks the
non-Abelian symmetry and facilitates the emergence of
quantum scars. Notably, the transitions in the Hamil-
tonian that give rise to quantum scars also result in
non-thermalizing local observables. This correlation be-
tween quantum scars and non-thermalizing observables
presents an avenue for future research.

V. DISCUSSION & OUTLOOK

This work addresses the unresolved question of
whether noncommuting charges facilitate or obstruct

thermalization, a topic that has attracted considerable
attention in quantum thermodynamics and many-body
physics [4, 10, 19–21, 59–66]. We show that noncommut-
ing charges, across various systems, tend to decrease the
number of local observables that comply with the Eigen-
state Thermalization Hypothesis (ETH), effectively tran-
sitioning these systems from non-equilibrium to thermal
equilibrium. This finding reinforces the notion that non-
commuting charges are conducive to thermalization.

Our findings pave the way for future investigations,
such as experimental tests, targeting two objectives.
The first objective is to examine the emergence of non-
stationary dynamics during the transition from noncom-
muting to commuting charge systems. This can initially
be explored through simple implementations, such as
those described in Section IV D. However, dynamical
symmetries are sufficient, but not necessary conditions
for non-stationary dynamics. Therefore, it is worthwhile
to explore systems where charges transition between
commuting and noncommuting states without dynami-
cal symmetries. For instance, in the Heisenberg Hamilto-
nian context, instead of introducing an external field, one

could use a coupling term like (σ
(j)
x σ

(j+1)
y −σ(j)

y σ
(j+1)
x ) to

maintain U(1) symmetry while breaking SU(2) symme-
try. Investigating such symmetry-breaking terms could
elucidate the specific aspects of non-stationary dynamics
driven by noncommuting charges and their relationship
with dynamical symmetries.

Recently, noncommuting charges were argued to desta-
bilize many-body localization [67], a type of non-
stationary behaviour. Our results and this work thus
naturally reinforce one another. A second opportunity
for future work is to test whether our results explain
the destabilization found in Ref. [67]. This would en-
tail identifying whether dynamical symmetries also cause
many-body localization and studying the algebraic rela-
tionship between those symmetries and the noncommut-
ing charges.

A third opportunity for future work was presented in
Sec. IV D. The Hamiltonians presented in this section
to transition from commuting to noncommuting charges
overlap with those presented in Ref. [48],to transition
from a system with quantum scars to one with out
them. Identifying a correspondence between those quan-
tum scars and the non-thermalizing observables is an-
other opportunity. Furthermore, the connection to scars
could help explain why noncommuting charges increase
average entanglement [19], with a difference that shrinks
with the system size. Noncommuting charges seem to
conflict with the existence of quantum scars, which typ-
ically have subthermal entanglement entropy. Noncom-
muting charges may be increasing average entangled by
“eliminating” these less entangled states. Note that scars
constitute a vanishing fraction of a systems with eigen
states, which is consistent with the increase in entangle-
ment in Ref. [19] quickly decreasing with system size.

A third avenue for future research, discussed in Sec-
tion IV D, involves examining Hamiltonians that fa-
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cilitate the transition from commuting to noncommut-
ing charges. These Hamiltonians overlap with those in
Ref.[48], which describe transitions from systems with
quantum scars to those without. Exploring the relation-
ship between quantum scars and non-thermalizing ob-
servables presents another opportunity. This exploration
could further tie into the observed increase in average en-
tanglement due to noncommuting charges [19]. Ref.[48]
suggests that noncommuting charges reduce quantum
scars, which have subthermal entanglement entropy and
represent a small fraction of the system’s eigenstates.
This reduction in lesser-entangled states may contribute
to the increased average entanglement observed with
noncommuting charges.

The outlined future work aims to decipher the com-
plex role of noncommuting charges in thermalization.
On one hand, evidence suggests they hinder thermal-
ization, as seen in their deviation from thermal state
forms [10], reduced entropy production rates [9], more
restricted dynamics compared to commuting charge sys-
tems [23], and hindering derivations of the thermal state’s

form [5–8]. On the other hand, evidence supports their
role in promoting thermalization, indicated by increased
average entanglement [19, 20] and the elimination of non-
stationary dynamics. This dichotomy suggests that non-
commuting charges have a more nuanced relation with
thermalization, necessitating further research to fully un-
derstand their influence.
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[14] J. Polo-Gómez, L. J. Garay, and E. Mart́ın-Mart́ınez, A detector-based measurement theory for quantum field theory,

Physical Review D 105, 065003 (2022).
[15] A. Aspect, Bell’s inequality test: more ideal than ever, Nature 398, 189 (1999).
[16] C. Emary, N. Lambert, and F. Nori, Leggett–garg inequalities, Reports on Progress in Physics 77, 016001 (2013).
[17] S.-S. Majidy, H. Katiyar, G. Anikeeva, J. Halliwell, and R. Laflamme, Exploration of an augmented set of leggett-garg

inequalities using a noninvasive continuous-in-time velocity measurement, Physical Review A 100, 042325 (2019).
[18] S. Majidy, J. J. Halliwell, and R. Laflamme, Detecting violations of macrorealism when the original leggett-garg inequalities

are satisfied, Physical Review A 103, 062212 (2021).
[19] S. Majidy, A. Lasek, D. A. Huse, and N. Yunger Halpern, Non-abelian symmetry can increase entanglement entropy,

Physical Review B 107, 045102 (2023).
[20] S. Majidy, U. Agrawal, S. Gopalakrishnan, A. C. Potter, R. Vasseur, and N. Yunger Halpern, Critical phase and spin

sharpening in su (2)-symmetric monitored quantum circuits, Physical Review B 108, 054307 (2023).



9

[21] T. Upadhyaya, W. F. Braasch Jr, G. T. Landi, and N. Yunger Halpern, What happens to entropy production when
conserved quantities fail to commute with each other, arXiv preprint arXiv:2305.15480 (2023).

[22] G. Manzano, Squeezed thermal reservoir as a generalized equilibrium reservoir, Physical Review E 98, 042123 (2018).
[23] I. Marvian, Restrictions on realizable unitary operations imposed by symmetry and locality, Nature Physics 18, 283 (2022).
[24] J. Preskill, Reliable quantum computers, Proceedings of the Royal Society of London. Series A: Mathematical, Physical

and Engineering Sciences 454, 385 (1998).
[25] D. Gottesman, An introduction to quantum error correction and fault-tolerant quantum computation, in Quantum infor-

mation science and its contributions to mathematics, Proceedings of Symposia in Applied Mathematics, Vol. 68 (2010) pp.
13–58.

[26] E. T. Campbell, B. M. Terhal, and C. Vuillot, Roads towards fault-tolerant universal quantum computation, Nature 549,
172 (2017).

[27] N. Yunger Halpern, M. E. Beverland, and A. Kalev, Noncommuting conserved charges in quantum many-body thermal-
ization, Physical Review E 101, 042117 (2020).

[28] N. Yunger Halpern and S. Majidy, How to build hamiltonians that transport noncommuting charges in quantum thermo-
dynamics, npj Quantum Information 8, 10 (2022).

[29] D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Physical Review A 57, 120 (1998).
[30] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, et al., Quantum

computational advantage using photons, Science 370, 1460 (2020).
[31] T. Rudolph and S. S. Virmani, The two-qubit singlet/triplet measurement is universal for quantum computing given only

maximally-mixed initial states, Nature Communications 14, 7800 (2023).
[32] M. H. Freedman, M. B. Hastings, and M. S. Zini, Symmetry protected quantum computation, Quantum 5, 554 (2021).
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