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A key objective in nuclear and high-energy physics is to describe nonequilibrium dynamics of matter,
e.g., in the early Universe and in particle colliders, starting from the standard model of particle physics.
Classical computing methods, via the framework of lattice gauge theory, have experienced limited success
in this mission. Quantum simulation of lattice gauge theories holds promise for overcoming computational
limitations. Because of local constraints (Gauss’s laws), lattice gauge theories have an intricate Hilbert-
space structure. This structure complicates the definition of thermodynamic properties of systems coupled
to reservoirs during equilibrium and nonequilibrium processes. We show how to define thermodynamic
quantities such as work and heat using strong-coupling thermodynamics, a framework that has recently
burgeoned within the field of quantum thermodynamics. Our definitions suit instantaneous quenches,
simple nonequilibrium processes undertaken in quantum simulators. To illustrate our framework, we
compute the work and heat exchanged during a quench in a Z2 lattice gauge theory coupled to matter in
1þ 1 dimensions. The thermodynamic quantities, as functions of the quench parameter, evidence a phase
transition. For general thermal states, we derive a simple relation between a quantum many-body system’s
entanglement Hamiltonian, measurable with quantum-information-processing tools, and the Hamiltonian
of mean force, used to define strong-coupling thermodynamic quantities.
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Introduction—An overarching goal in nuclear and
high-energy physics is to simulate strongly interacting
matter, starting from gauge theories. Key focuses include
nonequilibrium phenomena described by quantum chromo-
dynamics (QCD), the theory of the strong force.
Nonequilibrium phenomena arise in ultrarelativistic par-
ticle collisions [1,2] and in the early Universe [3,4].
Theoretical studies [5–9] of in- and out-of-equilibrium
phases of QCD, and of its thermalization mechanisms, are
often restricted to extreme parameter regimes to facilitate
perturbation theory. Alternatively, studies feature simple
(often low-dimensional) models to capture qualitative
features of QCD.
Studying QCD and other strongly interacting gauge

theories requires nonperturbative tools, as enabled by

lattice gauge theory (LGT) [10–14]. Within the path-
integral formulation of LGTs, Monte Carlo simulations
can be feasible if Euclidean (imaginary) time replaces
Minkowski (real) time. The scheme permits parallels with
statistical mechanics: Euclidean time stands in for inverse
temperature, and vacuum expectation values serve as
thermal averages. LGT has enabled thermodynamic studies
of the QCD equation of state at small chemical potentials
[15–26]. Nonetheless, the sampling weight in Monte Carlo
computations can become nonreal, requiring infeasibly
many samples [26–30]. These limitations do not inhibit
Hamiltonian-based approaches, such as tensor-network
methods [31–33] and quantum simulation [34–39].
These approaches, hence, suit thermodynamic studies of
gauge theories, in and out of equilibrium. Still, we need a
modern description of LGTs in the language of quantum
thermodynamics.
The field of quantum thermodynamics extends conven-

tional thermodynamics to small and quantum systems that
exchange heat and work [40–42]. A typical setup features a
subsystem of interest (the “system”) interacting with a
“reservoir” of inaccessible degrees of freedom (d.o.f.)

*Contact author: davoudi@umd.edu
†Contact author: cjarzyns@umd.edu
‡Contact author: niklasmu@uw.edu
§Contact author: gshivali@umd.edu
∥Contact author: cdpowers@umd.edu
¶Contact author: nicoleyh@umd.edu

PHYSICAL REVIEW LETTERS 133, 250402 (2024)

0031-9007=24=133(25)=250402(10) 250402-1 © 2024 American Physical Society

https://orcid.org/0000-0002-7288-2810
https://orcid.org/0000-0002-3464-2920
https://orcid.org/0000-0002-1542-9497
https://orcid.org/0000-0002-7918-2841
https://orcid.org/0000-0003-1848-3525
https://orcid.org/0000-0001-8670-6212
https://ror.org/047s2c258
https://ror.org/047s2c258
https://ror.org/02048n894
https://ror.org/047s2c258
https://ror.org/047s2c258
https://ror.org/047s2c258
https://ror.org/00cvxb145
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.133.250402&domain=pdf&date_stamp=2024-12-19
https://doi.org/10.1103/PhysRevLett.133.250402
https://doi.org/10.1103/PhysRevLett.133.250402
https://doi.org/10.1103/PhysRevLett.133.250402
https://doi.org/10.1103/PhysRevLett.133.250402


[43,44]. The coupling is often weak because a system and
reservoir typically interact only at their shared boundary.
This boundary is of lower dimensionality than the system,
whose volume is proportional to its internal energy. Hence,
the interaction energy is much smaller than the system’s
and reservoir’s internal energies. Yet quantum systems and
reservoirs can be small while behaving thermodynamically
[45–47]; their interactions need not be negligible.
Hence, the subfield of strong-coupling (quantum)

thermodynamics has burgeoned recently [48–57]. Strong
coupling blurs the system-reservoir boundary, complicating
the definition of the system’s internal energy, work, and
heat. Nonetheless, definitions have been developed and
obey thermodynamic laws [52,54,55,58–60].
These considerations raise the question of whether weak-

coupling thermodynamics can describe LGTs. Local con-
straints, or Gauss’s laws, form the defining feature of
(lattice) gauge theories: the charge at a site balances the
electric-field flux emanating from the site. Only a subspace
of the gauge theory’s Hilbert space satisfies Gauss’s laws
and consists of physical states. This restriction complicates
the partitioning of the system into subsystems: the values of
the fields on one side of any partition depend on the values
on the other side. Yet a partitioning is used to define
quantities such as the bipartite entanglement entropy
[61–68]. The system-reservoir partitioning in LGTs,
we posit, can resemble that in strong-coupling thermody-
namics. Hence, we use strong-coupling thermodynamics to
define thermodynamic properties of LGTs.
We answer the following questions: What are the work

and heat exchanged during instantaneous quenches [69]
(simple nonequilibrium processes created in quantum
simulations) [70,71]? Can these quantities signal phase
transitions [72]? Can such quantities be measured effi-
ciently with quantum-information-processing tools?
We describe how to compute internal-energy changes.

We further show how to define work and heat consistently
with the first and second laws of thermodynamics [58]. A
simple model illustrates this framework: a Z2 LGT coupled
to hardcore bosonic matter in 1þ 1 dimensions (D). We
observe that thermodynamic quantities, as functions of
chemical potential, signal an apparent phase transition.
Furthermore, we bridge the fields of quantum information
theory and strong-coupling quantum thermodynamics: we
show that the entanglement Hamiltonian [81,82], which
can often be efficiently measured experimentally [83–86],
is related to the Hamiltonian of mean force [52], which
underpins strong-coupling quantum thermodynamics.
Review of strong-coupling quantum thermodynamics—

Consider a system S and a reservoir R. The composite
S ∪ R evolves under the Hamiltonian

HS∪R ≔ HS þHR þ VS∪R: ð1Þ
HS and HR denote the system and reservoir Hamiltonians,
respectively; VS∪R denotes the interaction. During a
thermodynamic process, S can absorb heat Q and work

W. (Heat, work, and internal energy refer to averages
throughout this Letter.)
In weak-coupling quantum thermodynamics, VS∪R con-

tributes negligibly to the total internal energy, US∪R ≔
hHS∪Ri. Hence, the system’s internal energy is US ≔ hHSi
[59]. One can measure US by accessing only system d.o.f.
In contrast, when hVS∪Ri is comparable to hHSi, one must
use strong-coupling thermodynamics.
How much VS∪R contributes to US is ambiguous. To re-

solve the ambiguity, onecandefine theglobalGibbs statewith
respect to an inverse temperature β: πS∪R≔e−βHS∪R=ZS∪R.
The partition function is ZS∪R ≔ Trðe−βHS∪RÞ. Throughout
this Letter, we denote thermal states by π and general density
matrices by ρ. TrX denotes the partial trace over X. Consider
tracing out the reservoir from πS∪R. The system’s reduced
density matrix is πS ≔ TrRðπS∪RÞ≡ e−βH

�
S=Z�

S. This is a
thermal state with respect to an effective Hamiltonian, a
“Hamiltonian of mean force” [52],

H�
S ≔ −

1

β
ln

�
TrRðe−βHS∪RÞ

ZR

�
; ð2Þ

wherein ZR≔TrRðe−βHRÞ and Z�
S≔TrSðe−βH�

SÞ¼ZS∪R=ZR.
Equation (2) underlies an intuitive definition for the system’s
free energy [52,87,88],

FS ≔ −
1

β
lnðZ�

SÞ. ð3Þ

It is natural to equate hH�
Si with US [51,58,59,87].

Consequently, once H�
S has been determined by tracing

over the reservoir d.o.f. [Eq. (2)], one need not access
reservoir d.o.f. further to compute US. Furthermore, if S ≔
−TrSðπS ln πSÞ denotes the thermal von Neumann entropy,
then the equality FS ¼ US − S

β holds in equilibrium [89].
Any change inUS comes from work and heat, by the first

law of thermodynamics: ΔUS ¼ W þQ. By the second
law, ΔFS ≤ W, or Q ≤ ΔS=β. Here, ΔUS, ΔFS, and ΔS
denote, respectively, net changes in the system’s internal
energy, free energy, and entropy. Intuition guides the
separation of ΔUS into W and Q: work comes from
changes in the system’s Hamiltonian and heat from changes
in the system’s state [41]. To define work and heat, we now
specify a thermodynamic process.
Instantaneous quenches—During a quench, the

Hamiltonian changes rapidly. Quenches generate nonequi-
librium conditions and are studied in diverse quantum-
simulation experiments [86,90–100]. Figure 1 depicts the
quench studied here. The system-reservoir composite
begins in a Gibbs state: ρiS∪R ≔ ρS∪Rðt ¼ 0−Þ ¼ πiS∪R ≔
e−βH

i
S∪R=Trðe−βHi

S∪RÞ, wherein the initial composite
Hamiltonian Hi

S∪R ≔ HS∪Rðt ¼ 0−Þ. Equation (1), with a
time-dependent HSðtÞ, specifies HS∪R. At time t ¼ 0,
HSðtÞ is instantaneously quenched from HSðt ¼ 0−Þ ≔
Hi

S to HSðt ¼ 0þÞ ≔ Hf
S. The system-reservoir composite
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equilibrates to a Gibbs state under the final total
Hamiltonian HS∪Rðt ¼ 0þÞ ≔ Hf

S∪R. The initial and final
Gibbs states share the temperature β−1 by assumption.
Justifications include the possibility that S ∪ R couples
weakly to a larger reservoir, at a temperature β−1, in the
distant past and future [58].
Practical work and heat definitions depend on system

d.o.f. alone. We present such definitions, for the quenches
just described, in Ref. [58]; see also Refs. [49,52,87]. The
system’s internal energy is

USðtÞ ≔ hH�
SðtÞi ¼ Tr½ρSðtÞH�

SðtÞ�; ð4Þ

for arbitrary states ρSðtÞ ≔ TrR½ρS∪RðtÞ�. H�
S becomes

time-dependent under the replacement TrR(e−βHS∪R) ↦
TrR(e−βHS∪RðtÞ) in Eq. (2). During the quench, ΔUS equals
the work absorbed by S:

W ≔ TrS½ρiSH�
Sðt ¼ 0þÞ� − TrS½ρiSH�

Sðt ¼ 0−Þ�: ð5Þ

During the equilibration, ΔUS equals the heat absorbed
by S:

Q ≔ TrS½ρfSH�
Sðt ¼ 0þÞ� − TrS½ρiSH�

Sðt ¼ 0þÞ�: ð6Þ

These definitions are intuitive and obey the first and second
laws of thermodynamics [58]. Upon identifying a
Hamiltonian of the form in Eq. (1), one calculates work
and heat by measuring hH�

Si. We show next how to measure
this quantity.
Measuring thermodynamic quantities in quantum

simulations—Here, we derive a relation between strong-
coupling-thermodynamics quantities and a quantity called
the “entanglement Hamiltonian.” Every density matrix ρ
can be expressed as ρ ¼ P

k pkjkihkj. The jki denote
eigenstates and the pk ∈ ½0; 1�, probabilities. Define
λk ≔ − lnðpkÞ ≥ 0, such that ρ ¼ P

k e
−λk jkihkj. This

expansion has the form of a thermal state at unit temper-
ature (with the normalization factor, or partition func-
tion, absorbed into the e−λk). For ρ ¼ ρS ≔ TrRðρS∪RÞ, this
Hamiltonian is the “(bipartite) entanglement Hamiltonian”
[81,82],

Hent
S ≔ − lnðρSÞ: ð7Þ

This operator contains more information than the bipartite
entanglement entropy. It has spawned numerous studies in
quantum information theory and many-body physics.
Parametrized Ansätze for entanglement Hamiltonians
[82], with random-measurement protocols [101–104], en-
able tomography of ground and nonequilibrium states
[83–85,105,106], including of LGTs [86,107,108].
To leverage such tomography tools, we prove a relation

between Hent
S and H�

S for thermal states. We rewrite the
Hamiltonian of mean force as

H�
S ¼ −

1

β
ln

�
TrRðe−βHS∪RÞ
TrRðe−βHRÞ

�
ð8aÞ

¼ −
1

β
ln

�
ρS

ZS∪R

ZR

�
: ð8bÞ

The system’s reduced state is ρS¼πS≔TrRðe−βHS∪RÞ=ZS∪R.
Using Eqs. (7) and (3) yields the relation between the
entanglement Hamiltonian and the Hamiltonian of mean
force:

H�
S ¼

1

β
Hent

S þ FS: ð9Þ

IS denotes the identity operator defined on S.
One can measure the first term in Eq. (9) using the

aforementioned tomography tools (if the Ansätze model
Hent

S accurately). To measure FS, one must measure ZS∪R
and ZR [109–112], necessitating access to the reservoir

FIG. 1. Overview of relevant quench protocol. The system starts in a global Gibbs state. At t ¼ 0, the system Hamiltonian HS is
quenched instantaneously. Under the new total Hamiltonian, the system-reservoir composite equilibrates to a global Gibbs state with the
initial state’s temperature.
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d.o.f. To avoid measuring the second term in Eq. (9), we
study the average dissipated work, Wdiss ≔ W − ΔFS, a
measure of entropy production [113,114]. For our quench
protocol,

Wdiss ¼
1

β
TrSfρiS½Hent

S ðt ¼ 0þÞ −Hent
S ðt ¼ 0−Þ�g: ð10Þ

Hence, one can infer Wdiss upon measuring the entangle-
ment Hamiltonian alone.
Lattice gauge theories and strong-coupling quantum

thermodynamics—We use the Hamiltonian formulation of
LGTs [12], which suits quantum simulation. As matter and
gauge fields undergo local symmetry-group transforma-
tions, the observables remain invariant. The symmetry
restricts the states to a “physical subspace”: for each site
n, a “Gauss-law” operator Gn acts on n and commutes with
the Hamiltonian. The full Hilbert space (spanned by
eigenbases of electric and matter fields) decomposes into
Gn eigenspaces, for each n. The eigenspace labeled by
some eigenvalue g, and shared by all the Gn, is the physical
subspace [115]. That is, for any physical state jΨphysi,

GnjΨphysi ¼ gjΨphysi; ∀ n: ð11Þ
In electrodynamics, Gn ¼ ∇ · En − ρn. Here, En denotes
the electric field, and ρn denotes the (dynamical) electric-
charge density, both at site n. Gauss’s law follows from
setting g ¼ 0 (g ≠ 0) in Eq. (11) in the absence (presence)
of a background static electric charge.
One may impose Gauss’s laws by manually removing

the unphysical states from the full Hilbert space [116,117].
Alternatively, the Hamiltonian HS∪R may be replaced with
HS∪R þP

n fðGnÞ. fðGnÞ denotes a function of Gauss-law
operators. Chosen properly, it penalizes transitions to
unphysical states [118–125]. Consider partitioning a lattice
into a system S and a reservoir R. Some Gauss-law penalty
terms act on both S and R: Gauss-law operators are
multibody operators consisting of gauge and matter fields.
Such penalty terms, thus, contribute to the VS∪R in Eq. (1).
Their contribution must be large to constrain the state to the
physical subspace. Therefore, one cannot generally neglect

the internal energy’s dependence on VS∪R when computing
thermodynamic quantities [see Supplemental Material
(SM) [126] ]. Consequently, LGTs can be described within
the framework of strong-coupling thermodynamics.
Example of Z2 LGT coupled to matter in ð1þ 1ÞD—

Consider a Z2 gauge field (hardcore bosons) coupled to
matter fields (chosen to be hardcore bosons). The initial
state evolves under the Hamiltonian

H ¼ Hh þHe þHm þHμ þHc

≡ −J
XN−1

n¼0

ðσþn σ̃znσ−nþ1 þ H:c:Þ − ϵ
XN−1

n¼0

σ̃xn

þm
XN−1

n¼0

ð−1Þnσþn σ−n −
XN−1

n¼0

μnσ
þ
n σ

−
n þ c

XN−1

n¼0

In; ð12Þ

on a one-dimensional N-site spatial lattice with periodic
boundary conditions (σN ¼ σ0). Hh, He, Hm, and Hμ re-
present the matter-hopping, electric-field, matter-mass, and
matter-chemical-potential terms, respectively. A constant
Hc is added such that HSðtÞ, HR, and HS∪RðtÞ have only
non-negative eigenvalues. J, ϵ, m, and μn denote the
hopping strength, electric-field strength, matter mass,
and site-n chemical potential, respectively. Pauli operator
σn acts on the Hilbert space of the site-n matter field. Pauli
operator σ̃n acts on the Hilbert space of the gauge field
rightward of n. Specifically, σ̃xn (σ̃zn) denotes the electric-
field (gauge-link) operator.
The Z2 gauge transformation is generated by the Gauss-

law operator [128]

Gn ¼ σ̃xnσ̃
x
n−1 exp

�
iπ

�
σþn σ−n þ ð−1Þn − 1

2

��
: ð13Þ

The physical states obey Eq. (11) with g ¼ 1. One can rea-
lize the gauge-invariant dynamics by adding

P
n fðGnÞ ¼

κ
P

nð1 − GnÞ to H, then taking the limit κ → ∞ [129].
The lattice can be partitioned into a system S and a

reservoir R, as in Fig. 2(a). Also, the Hamiltonian (12)
decomposes as in Eq. (1). Some hopping terms act only on
sites in S (R) and so belong in HS (HR). Other terms

(a)

(c)

(b)

(d)

FIG. 2. (a) Partitioning of d.o.f. into system (S) and reservoir (R) d.o.f. Partitioning of total Hamiltonian’s (b) hopping terms,
(c) electric-field terms, and (d) mass and chemical-potential terms into HSðtÞ (teal), HR (light red), and VS∪R (purple). Matter (gauge-
field) d.o.f. reside on lattice sites (links). The last link wraps around to indicate the lattice’s periodicity.
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describe hopping between a site in S and a site in R. These
interaction terms belong in VS∪R; see Fig. 2(b). The
electric-field Hamiltonian can be partitioned as follows;
see Fig. 2(c). Terms acting on links in S belong in HSðtÞ.
Terms acting on links in R, but touching the S-R boundary,
belong in VS∪R due to Gauss’s laws. Terms acting on links
elsewhere in R belong in HR. Terms in Hm and Hμ belong
inHSðtÞ andHR, depending on whether they act on a site in
S or R; see Fig. 2(d). Finally, if penalty terms enforcing
Gauss’s law act at the boundary, they belong in VS∪R.
Otherwise, they belong in HS or HR.
We set reservoir’s chemical potential to zero and quench

the chemical potential from μn ¼ μi ¼ 0 to μn ¼ μf > 0 at
all sites n in the system. We further define the “chiral
condensate” [130]

Σ ≔
1

NS

XNS−1

n¼0

ð−1Þnhσþn σ−n i: ð14Þ

NS denotes the system size. The expectation value is in the
final thermal state, whose μn ¼ μf at all sites n in S. If
μf ≫ ϵ, m, the system’s state is dominated by the matter
fields’ all-spin-up state, yielding Σ ¼ 0. At other μf values,
Σ could be nonvanishing. In fact, Σ suddenly changes from
finite to vanishing values as μf increases, evidencing a
phase transition, as Fig. 3(a) shows. This apparent phase
transition does not look perfectly sharp due to finite-
temperature (see SM [126]) and finite-size effects [131].
The critical value μf ¼ μcf denotes the transition point,
where Σ0 ≔ dΣ=dμf is maximized.
Figure 3 displays thermodynamic quantities, Wdiss, W,

Q,ΔFS, andΔS, calculated as functions of μf . As μf grows,
Wdiss ≔ W − ΔFS remains near zero until around the μf
value where the apparent phase transition occurs.
Afterward, Wdiss increases. Hence, Wdiss indicates the
suspected phase transition clearly. Similarly, W (βQ)
begins deviating from ΔFS (ΔS) around the transition.
Strong-coupling relations are valid in this model:

jhVS∪Ri=hHSij is non-negligible (≳0.1) in the initial and
final states at all the μf values used. Nonetheless, in the SM
[126], we apply weak-coupling relations for comparison:
US ¼ hHSi and ρS ¼ e−βHS=Trðe−βHSÞ. We find that the
thermodynamic quantities’ values differ from their strong-
coupling counterparts: the weak-coupling quantities change
less sharply, signaling the transition less reliably.
Outlook—This work shows how strong-coupling quan-

tum thermodynamics applies to lattice gauge theories in
and out of equilibrium. The work further shows how
entanglement Hamiltonians can be leveraged to measure
thermodynamic quantities in quantum simulations. Our
framework may be applied to explore further questions in
the quantum thermodynamics of gauge theories. Examples
include whether thermodynamic quantities signal topologi-
cal [81,134–141] or dynamical [142] phase transitions.
While quench protocols in LGTs have been implemented in
experiments [86,96–98,100,119,143–153], a longer-term
vision is to simulate more-general processes, including
quantum-adiabatic ones, and particle collisions relevant to
nuclear and high-energy physics [154–159]. Also, non-
Abelian and higher-dimensional gauge theories merit
studying within our framework. Developing quantum-
simulation protocols for studying gauge-theory thermody-
namics is an active frontier, and this work furthers this goal.
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