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Quantum complexity is emerging as a key property of many-body systems, including black holes, topological
materials, and early quantum computers. A state’s complexity quantifies the number of computational gates
required to prepare the state from a simple tensor product. The greater a state’s distance from maximal
complexity, or “uncomplexity,” the more useful the state is as input to a quantum computation. Separately,
resource theories—simple models for agents subject to constraints—are burgeoning in quantum information
theory. We unite the two domains, confirming Brown and Susskind’s conjecture that a resource theory of
uncomplexity can be defined. The allowed operations, fuzzy operations, are slightly random implementations
of two-qubit gates chosen by an agent. We formalize two operational tasks, uncomplexity extraction and
expenditure. Their optimal efficiencies depend on an entropy that we engineer to reflect complexity. We also
present two monotones, uncomplexity measures that decline monotonically under fuzzy operations, in certain
regimes. This work unleashes on many-body complexity the resource-theory toolkit from quantum information
theory.
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I. INTRODUCTION

Quantum complexity has recently swept from quantum
computation across many-body physics. A state’s quantum
complexity quantifies the difficulty of preparing the state from
a simple fiducial state, often labeled |0n〉 for n qubits, or of
uncomputing a state to |0n〉. For instance, a random circuit’s
output has a quantum complexity that advantages certain
quantum computations over classical competitors [1–3]. Com-
plexity also quantifies the difficulty of discrimination and of
preparing superpositions [4–6]. In condensed matter, topo-
logical phases are distinguished by complexities that scale
linearly with the system size [7–15]. In many-body physics,
random evolutions increase complexity beyond when most
physical quantities, including correlators, equilibrate [16–19].
Complexity saturation therefore forms a late stage of quantum
many-body equilibration. This observation underpins a pro-
posal about the anti-de-Sitter-space/conformal-field-theory
(AdS/CFT) holographic correspondence: There, a wormhole
connecting two black holes is dual to a field-theoretic state.
The state’s complexity is conjectured to be proportional to the
wormhole’s length [20–25]. Such diverse applications portray
complexity as a physically impactful property.

*nicoleyh@umd.edu

Quantum computation is best begun with a low-complexity
state: A quantum computer needs “clean” qubits in the state
|0n〉 as we need blank paper when computing with a pencil.
To quantify a state’s resourcefulness in computation intu-
itively, Brown and Susskind define a state’s uncomplexity
as the gap between the state’s greatest possible complexity,
Cmax, and actual complexity [Fig. 1(a)] [23]. According to
a counting argument, an n-qubit state’s Cmax scales as en

[27]. Uncomplexity appears to decrease monotonically under
random dynamics; complexity obeys an analog of the sec-
ond law of thermodynamics [23,27–32]. This “second law of
uncomplexity” led Brown and Susskind to conjecture that a
resource theory for quantum uncomplexity can be defined. We
formulate that resource theory precisely and use it to prove
bounds on operational tasks’ efficiencies.

A resource theory is a simple quantum-information-
theoretic model for an agent restricted to performing only
certain operations. For example, in the resource theory of
entanglement, agents can perform only local operations and
classical communication. Resource theorists study which
state-to-state transformations the allowed operations can
and cannot effect [33]. States impossible to prepare are
scarce resources, which may facilitate operational tasks. In
the entanglement-theory example, entanglement is a resource
usable to simulate a quantum channel [34]. If a resource
theory’s rules encode fundamental constraints of Nature, the
conclusions extend from the agent’s capabilities to natural
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FIG. 1. State complexity and its geometry. (a) A pure n-qubit
state |ψ〉 has an exact circuit complexity C(|ψ〉) equal to the least
number of gates required to prepare |ψ〉 from |0n〉. The state’s exact
uncomplexity is the distance Cmax − C(|ψ〉) to the maximal n-qubit
state complexity, Cmax ∼ en. (b) In a revision of Nielsen’s geometry
[26,27], complexity curves the state space negatively [28]. Applying
a gate moves a state through a unit length along some direction.
Most directions lead to higher-complexity states. To transform into
a generic state |ψ ′〉, |ψ〉 likely must pass through |0n〉; no signifi-
cantly shorter path exists. Consequently, uncomplexity is desirable
in quantum computation: Given a complex |ψ〉, to prepare a desired
output |ψ ′〉, one must uncompute |ψ ′〉 to |0n〉. Our resource theory
slightly randomizes the gates (green shaded regions), leading them
to realistically increase the state’s complexity.

evolutions. Resource theories model diverse phenomena
including informational nonequilibrium [35–37], thermody-
namics [38–48], coherence [49–57], and quantum channels
[58–63]. From their origins in quantum information theory, re-
source theories have recently infiltrated other fields of science
[64–83]. Motivated by these studies’ impact, we introduce a
resource theory for quantum uncomplexity at the intersection
of high-energy theory and condensed matter.

We confirm Brown and Susskind’s conjecture that a re-
source theory for uncomplexity can be defined. Upon defining
the theory, we use it to define two operational tasks: Un-
complexity extraction distills |0〉’s from an arbitrary state.
Expending uncomplexity, one can emulate an arbitrary state.
We quantify these tasks’ optimal efficiencies with an en-
tropy that we introduce. This complexity entropy measures
the randomness that a state appears to have, to a realistic
observer able to measure only simple observables. In certain
regimes, we prove, the complexity entropy is a monotone, or
resource measure, decreasing monotonically under allowed
operations. This monotone result and another that we prove
are resource-theory versions of Brown and Susskind’s second
law of complexity.

A challenge in defining the resource theory follows from
the agent’s agency, or ability to choose operations. It is nat-
ural to formalize operations as gates for consistency with
circuit-based complexity studies. If able to implement any
gates, though, the agent can uncompute any pure state to |0n〉.
Uncomplexity will not be a scarce resource; the resource the-
ory will be a mockery. However, uncomputation circuits lack
robustness against imperfections in the gates’ implementation.
If the gates are slightly noisy, a deep uncomputation circuit
likely prepares a highly mixed state, on average. Yet mild
noise should not significantly change qualitative outcomes
achievable by the agent; the outcomes should be robust. We
ensure this robustness by designating the allowed operations
as fuzzy gates, slightly random approximations to the gates

that the agent wishes to perform, modeling the noise in realis-
tic circuit implementations. Upon undergoing too many fuzzy
gates, a state grows too random to be useful. Hence the fuzzi-
ness prevents the agent from increasing a state’s uncomplexity
with high probability [Fig. 1(b)]. This fuzziness also echoes
the widespread modeling of chaos with randomness [84–88].

This work is organized as follows. We define the resource
theory of uncomplexity, then prove one resource-theory ver-
sion of Brown and Susskind’s second law of complexity. We
formalize two operational tasks in the resource theory and
quantify their efficiencies with a complexity entropy that we
define and that obeys another second law. We conclude with
opportunities unveiled by this work.

II. DEFINITION OF THE RESOURCE THEORY
OF UNCOMPLEXITY

Consider a system of n qubits. Denote by σz the Pauli z
operator, by |0〉 its eigenvalue-1 eigenvector, and by 1 the
single-qubit identity operator. Let |0k〉 := |0〉⊗k .

Our resource theory’s allowed operations consist of build-
ing blocks that we call fuzzy gates. A fuzzy gate is effected
when the resource-theory agent attempts to perform any de-
sired gate U ∈ SU(4) on any two qubits. (Our results extend
to alternative gate sets favored in the holographic literature
[23,89,90]). The implemented gate is a slightly random vari-
ation on the target gate, as motivated in the introduction [91].
We model the randomness as follows. Denote by dŨ the Haar
(uniform) measure over SU(4). Fix an error parameter ε > 0.
Denote by pU,ε (Ũ ) any normalized probability density over
the two-qubit gates Ũ that satisfies two assumptions: (i) pU,ε

introduces noise in all directions of the two-qubit–gate space
around U , being nonzero on an open set that contains U . (ii)
The measure pU,ε (Ũ ) vanishes for all unitaries Ũ far from
the target gate: ‖U − Ũ‖∞ > ε, wherein ‖.‖∞ denotes the
operator norm. The implemented gate is a Ũ chosen according
to the measure pU,ε (Ũ ) dŨ [92].

Definition 1 (Fuzzy gates and operations). Denote by U
an arbitrary two-qubit gate. The fuzzy gate Ũ is selected ran-
domly according to any distribution pU,ε (Ũ ) dŨ that satisfies
conditions (i) and (ii) above. Every composition of fuzzy gates
is a fuzzy operation.

A resource theory’s allowed operations form a set closed
under composition [33]. We therefore choose our free opera-
tions to be fuzzy operations, which include all compositions
of fuzzy gates; the fuzzy operations form a set closed under
composition. The fuzziness suggests two variants of the re-
source theory. In one variant, the initial state is pure, and the
agent knows which gates are applied. A unitary models the
evolution, and the state remains pure. Holographic literature
motivates this variant [84–88], whereas quantum-information
conventions motivate the second. In the second variant, when-
ever applying a fuzzy gate, the agent lacks any knowledge
of the noise sample. All possible instances of the gate are
averaged over, increasing the state’s mixedness [35–37,93].
We further motivate and analyze both variants below.

The allowed operations exclude the tensoring on and dis-
carding of states. This lack, although unusual, has precedents
[47,93]. No states are free because any tensored-on state ben-
efits quantum computation: Consider tensoring a maximally
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complex m-qubit state onto a maximally complex n-qubit
state. Cmax grows to ∼en+m, whereas the actual complexity
grows only to ∼en + em [94]. Hence the tensoring-on raises
the uncomplexity from 0. Even tensoring on a maximally
mixed state can boost computational power, as shown by the
one-clean-qubit computational model [23,27,95]. The allowed
operations exclude the discarding of subsystems because the
resource theory is intended to model Brown and Susskind’s
setup [23]—a system whose Hilbert space remains fixed.

III. SECOND LAW OF COMPLEXITY FOR
PURE-STATE VARIANT

In the resource theory’s first variant, the initial state is
pure, the agent always knows which gate is applied, and the
evolution is unitary. This setting is common in condensed-
matter theory and high-energy physics. There, a unitary circuit
of randomly sampled gates mimics chaos in certain ways
[84–88]. This scenario precludes challenges such as defining
mixed-state complexity. In this variant, we prove a version of
Brown and Susskind’s “second law of complexity” [23]—in
resource-theory parlance, a monotone statement. Monotones
are functions f that quantify a resource’s monotonic de-
cline under allowed operations. For any state ρ and allowed
operation E , f (ρ) � f (E (ρ)). Different monotones quantify
a state’s usefulness in different tasks. For example, con-
sider extracting work by thermalizing an arbitrary state ρ

(analogously to extracting work from an expanding gas) or
performing work to prepare ρ (analogously to compressing
a gas). The extractable and required work are monotones
in a thermodynamic resource theory [96]. Monotones re-
semble free energy, but each resource theory has multiple
monotones; there is no “one monotone to rule them all”
[37].

We prove that two functions are fuzzy-operation mono-
tones in certain regimes. The conditionality reflects the
notorious difficulty of proving that complexity measures grow
monotonically under random dynamics [16,17,23,26,97–
104]. The first monotone depends on a brickwork circuit, a
common circuit formed from staggered layers of gates (Fig. 3
in Appendix A). Define the brickwork complexity Cbw(|ψ〉)
as the least number of gates in any brickwork circuit that
prepares a pure state |ψ〉. The brickwork uncomplexity is
Cmax − Cbw(|ψ〉).

Theorem 1 (“Second law” for brickwork uncomplexity:
informal). Let |ψ〉 denote an arbitrary n-qubit pure state.
The brickwork uncomplexity Cmax − Cbw(|ψ〉) cannot increase
under any fuzzy brickwork circuit Ũ of � n layers, except in
a measure-0 set of |ψ〉-preparation-and-Ũ -sampling experi-
ments.

We prove a more technical version of the theorem in
Appendix A. The proof extends random-circuit results in
Ref. [17], leveraging assumption (i) in Definition 1. This sec-
ond law is for quantum complexity, not for an entropy of the
state averaged over noise samples. Such entropies were shown
to obey second laws in Ref. [37]. We contrast these entropies
with complexity below. Also, we prove another second law
for complexity (another monotone) in our resource theory’s
second variant. Both second laws hold even if the fuzziness ε

is arbitrarily small—even constant in n, such that fuzzy gates

mimic the target (ideal) evolution with constant-in-n precision
for a time.

IV. RESOURCE-THEORY VARIANT 2:
MIXED-STATE EVOLUTION

In the remainder of this paper, the resource-theory agent
does not know which noise sample is realized during any
fuzzy gate. All noise instances are effectively averaged
over; a fuzzy gate implements the quantum channel E (.) =∫

Ũ (.)Ũ † pU,ε (Ũ ) dŨ . The corresponding fuzzy operations
form a strict subset of the set of noisy operations, al-
lowed in the resource theory of informational nonequilibrium
[35–37,93]. All results proved about variant 2 of our resource
theory are true also of variant 1.

Variant 2 offers a new approach to defining mixed-state
complexity, following Brown and Susskind’s resource-centric
vision [23]. A common notion of mixed-state complexity
quantifies the gates required to prepare a purification of
ρ from |02n〉. This measure is the purification complexity
[105–107], which differs from the notion of mixed-state com-
plexity captured by our resource theory. We illustrate with
the n-qubit maximally mixed state, 1⊗n/2n. A purification of
1⊗n/2n consists of n Bell pairs (maximally entangled states
[108]). Each pair results from starting with |02〉, then perform-
ing one single-qubit rotation and one two-qubit entangling
gate. Hence the purification complexity of 1⊗n/2n is upper-
bounded by 2n. However, 1⊗n/2n is invariant under every
unitary and so is useless for quantum computation, in the
absence of additional qubits. So is a highly complex state:
Starting with such a complex state, one needs many gates
to uncompute even a few qubits to |0〉’s. If the agent cannot
perform so many gates, a complex state benefits quantum
computation as little as a maximally mixed state does [23]
(Appendix B). Our resource theory correspondingly casts a
state’s complexity as the difficulty of extracting |0〉’s from the
state. See Appendix B for further elaboration. We quantify the
difficulty of extracting |0〉’s with a new entropic quantity.

V. COMPLEXITY ENTROPY

We introduce an entropy that quantifies tasks’ efficiencies
in the resource theory of uncomplexity. Common entropies do
not reflect complexity [109]. For instance, consider a chaotic
system evolving unitarily from |0n〉. The state’s von Neumann
entropy remains constant, even as the state grows highly com-
plex. Furthermore, a small subsystem’s reduced state tends
to equilibrate on short timescales, so entanglement entropies
saturate quickly. In contrast, the complexity can grow for a
time ∼en [17]. Failing to encode the complexity’s timescales,
ordinary entropies cannot capture complexity. We overcome
this obstacle, introducing an entropy that quantifies complex-
ity, inspired by Ref. [16]. Reference [110] will detail the
entropy’s properties. References [111,112] introduced related
quantities, motivated by pseudorandomness and cryptogra-
phy.

The complexity entropy quantifies how random a state
appears if probed only through simple observables. For in-
stance, consider measuring a simple observable of a highly
complex state |ψ〉. The outcome is highly random, as if |ψ〉
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were highly entropic [113]. Reference [16] introduces a strat-
egy for quantifying this apparent randomness: Quantify the
state’s distinguishability from the maximally mixed state in
an operational task implementable with a limited number of
steps. Inspired by this approach, we use the hypothesis-testing
entropy as our quantifier [114–120].

In a hypothesis test, one receives a state, ρ or σ ,
and guesses which state arrived. The most general strat-
egy involves a two-outcome measurement, represented
quantum-information-theoretically with a positive-operator-
valued measure (POVM) [108] {Q,1⊗n − Q}. Each mea-
surement operator is positive-semidefinite: 0 � Q � 1⊗n.
Outcome Q suggests that the state was ρ, and 1⊗n − Q sug-
gests that the state was σ . Let σ = 1⊗n/2n. Suppose that one
must, if the state is ρ, guess ρ with a probability at least
η ∈ (0, 1]. The minimum probability of wrongly guessing
ρ, if the state is σ = 1⊗n/2n, defines the hypothesis-testing
entropy [116,119,121],

Hη

h (ρ) := log2

(
min

0�Q�1
Tr(Qρ)�η

{Tr(Q)}
)

. (1)

We restrict the measurement’s computational difficulty:
First, we define a set M0 of zero-complexity measurement
operators. Under such an operator’s action, each qubit is (i)
projected onto |0〉 or (ii) not touched (evolved with 1). Define
the variable α j as 1 if qubit j is projected and as 0 otherwise.
If (|0〉〈0|)0 ≡ 1, the measurement operator has the form

n⊗
j=1

( j |0〉〈0| j )
α j = Q0 ∈ M0. (2)

To progress beyond zero-complexity measurements, we fix
an integer r � 0. Consider performing � r two-local gates,
effecting a unitary Ur , before measuring a Q0 [122]. The net
effect, we define as a complexity-r measurement. The opera-
tors U †

r Q0Ur form a set Mr . Restricting to Mr the Q in (1), we
define the complexity entropy.

Definition 2 (Complexity entropy). The complexity entropy
of any state ρ is, for any error tolerance η ∈ (0, 1],

Hr,η
c (ρ) := min

Q∈Mr ,
Tr(Qρ)�η

{log2(Tr(Q))}. (3)

We can understand the definition through two extremes,
detailed in Appendix B and synopsized here. Suppose that
ρ = |ψ〉〈ψ | is pure. First, let the number r of performable
gates be at least the number of gates needed to prepare |ψ〉—
let |ψ〉 be relatively uncomplex. The complexity entropy will
attain its minimum at Hr,η

c (|ψ〉) = 0. Contrariwise, let |ψ〉 be
highly complex and only a few gates be performable (let r be
small). The complexity entropy maximizes: Hr,η

c (|ψ〉) = n.
We can choose different conventions in Definition 2, to

suit different setups. First, we can define M0 in terms of
the measurements natural for a given platform. Second, we
can define Mr in terms of any complexity measure, such as
Nielsen’s [26,98,99,123], rather than in terms of r gates.

The complexity entropy features in our second monotone
(“second law” for complexity). The complexity negentropy
n − Hr,η

c (ρ) quantifies how far from maximally mixed ρ looks
under limited-complexity measurements. The complexity ne-

FIG. 2. Operational tasks of uncomplexity extraction and expen-
diture in the resource theory. Since gates are fuzzy, the agent can
perform only � r gates, lest the state grow too noisy to be useful.
(a) Extracting uncomplexity from a state ρ, one applies � r fuzzy
gates. The number of qubits left in the state |0〉 is the extractable
uncomplexity, which equals the complexity entropy of ρ. (b) Given
enough |0〉’s, an agent can “spend” uncomplexity to imitate ρ: The
agent performs r fuzzy gates, preparing a state believed, by a com-
putationally bounded referee, to be ρ.

gentropy declines monotonically in two cases, which involve
two definitions: (i) Define an architecture as the layout of
gates in a quantum circuit. (ii) Define as Ek,r the ensem-
ble of n-qubit states formed as follows: Pick k = 0, 1, . . . , n
qubits uniformly randomly; and pick a k-qubit state vector
|φ〉 Haar-randomly. Prepare those qubits in |φ〉. Pad |φ〉 with
|0〉’s, to produce |φ〉|0n−k〉. Perform a circuit, with a random
architecture, of any � r fuzzy gates.

Lemma 1 (First case of the complexity negentropy’s
monotonicity). Consider drawing a state from Ek,r uniformly
randomly, then performing an arbitrary fuzzy gate. Let the
number of chosen qubits be k > log2(15r). The complexity
negentropy n − Hr,1

c does not increase, with probability 1.
Appendix E presents the proof, as well as the second

(more involved) case of the complexity negentropy’s mono-
tonicity. In both cases, η = 1, enabling us to apply the
algebraic-geometry toolkit of Ref. [17]. If the accuracy thresh-
old η � 1, a fuzzy gate can decrease Hr,η

c , as η can absorb
sufficiently small fuzziness. We therefore conjecture the com-
plexity negentropy’s monotonicity whenever η is sufficiently
large.

Conjecture 1 (Monotonicity of the complexity negen-
tropy). Let ρ denote any n-qubit quantum state. The com-
plexity negentropy n − Hr,η

c (ρ) cannot increase under fuzzy
operations, for any r ∈ Z�0, if η � η0(ε), for some function
η0(ε).

VI. UNCOMPLEXITY EXTRACTION AND EXPENDITURE

The complexity entropy, we prove, quantifies the optimal
efficiencies of two operational tasks that we formalize, us-
ing the resource theory (Fig. 2). The allowed operations’
fuzziness, recall, limits the number of gates performable
before the state grows too random to be useful. Our theo-
rems therefore concern an agent limited to performing � r
gates. We quantify states’ closeness with the trace distance,
T (ρ, ρ̄ ) := ‖ρ − ρ̄‖1/2, wherein ‖A‖1 = Tr

√
A†A denotes

the trace norm.
We define uncomplexity extraction as follows. Let ρ denote

any n-qubit state. For any tolerance δ � 0, we seek a circuit of
at most r ∈ Z�0 fuzzy gates, and a selection of w qubits, with
the following property. Suppose that ρ undergoes the circuit
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and then the nonselected qubits are discarded. The result is
δ-close to |0w〉 in trace distance [Fig. 2(a)]. The following
theorem establishes an extraction protocol’s existence and
near-optimality. Appendix C contains the proof.

Theorem 2 (Uncomplexity extraction). Let ρ, r, and δ be as
above, and assume that δ � rε. For every parameter value η ∈
[1 − (δ − rε)2, 1], some protocol extracts w = n − Hr,η

c (ρ)
qubits δ-close to |0w〉 in trace distance. Conversely, every
uncomplexity-extraction protocol obeys w � n − Hr,1−δ

c (ρ).
Theorem 2 endows the complexity entropy with an opera-

tional significance in a quantum-computational task, beyond
quantifying states’ indistinguishability.

Another bound governs the uncomplexity cost of mimick-
ing a state ρ. Suppose that a computationally limited referee,
upon receiving an n-qubit state, performs a hypothesis test
between ρ and the completely ignorant observer’s null hy-
pothesis, 1⊗n/2n. Computationally restricted, the referee can
measure only operators Q ∈ Mr . Given ρ, the referee must
guess ρ with a probability � η ∈ (0, 1]. Naturally, the referee
minimizes the probability of guessing ρ when given 1⊗n/2n.
Knowing the referee’s choice of Q (many Q’s can be optimal
[110]), the agent tricks the referee by preparing a simulacrum
ρ̃. The agent borrows w � n uncomplex |0〉’s from an “un-
complexity bank” (e.g., someone else’s laboratory). The bank
tacks on whichever (n − w)-qubit state σ is handy, to raise the
total number of qubits to n. The agent knows which qubits are
|0〉’s but not σ ’s form. The agent transforms the n-qubit state
with � r gates. The referee must guess, with a probability
� 1 − δ ∈ (0, 1], that the output is ρ.

Theorem 3 (Uncomplexity expenditure). Let ρ denote any
n-qubit state. Let r and δ be as above, and assume that the error
tolerance is δ � 2rε. For every η ∈ (0, 1], and for every (n −
w)-qubit state σ , ρ can be imitated with w = n − Hr,η

c (ρ)
uncomplex |0〉’s.

Appendix D contains the proof. We expect that n − Hr,η
c (ρ)

uncomplex |0〉’s are necessary.

VII. CONCLUSIONS

We have confirmed Brown and Susskind’s conjecture [23]
that a resource theory of uncomplexity can be defined. The
resource theory’s allowed operations balance random evo-
lutions, which model features of chaos, with the agency in
resource theories—the agent chooses operations to perform.
We proved two variations on Brown and Susskind’s second
law of complexity—resource-theory monotones. Using the
resource theory, we formalized uncomplexity expenditure and
extraction. The tasks’ optimal efficiencies, we quantified with
a complexity entropy that we introduced. This work intro-
duces into quantum complexity the resource-theory toolbox
that has garnered successes across quantum information the-
ory [37].

Our resource theory deviates superficially from two holo-
graphic conventions. We invoke the circuit complexity, instead
of Nielsen’s geometric distance; correspondingly, gates act in
discrete time steps, whereas Hamiltonians act continuously.
Our model is motivated by (i) quantum information theory,
where discrete gates form circuits; (ii) the closeness of circuit
complexity to Nielsen’s complexity [98]; and (iii) random
circuits’ exhibiting features of chaos. Reasons (ii) and (iii)

suggest that our results might extend from fuzzy gates to
perturbed continuous-time evolutions.

This work establishes several opportunities for future
research. First, the complexity entropy can quantify the ef-
ficiencies of tasks other than those defined here. Examples
include randomness extraction under computational restric-
tions [110]. The complexity entropy may be typically difficult
to compute but easier to bound. Experimental strategies in-
clude hypothesis testing and, combined with Theorem 2,
uncomplexity extraction. Reference [110] will explore the
complexity entropy’s properties and applications.

Second, the complexity entropy suggests an operational
answer to a question of active research: how to define mixed-
state complexity [16,105–107,124–126]. According to our
results, complexity quantifies the difficulty of extracting un-
complex |0〉 qubits. More precisely, the complexity entropy
can anchor a version of the strong complexity introduced in
Ref. [16].

Third, proving Conjecture 1 would cement the complexity
negentropy’s interpretation as a resource quantifier. Also, a
proof would elevate the converse in Theorem 2 to governing
arbitrarily many fuzzy gates: One would evaluate the com-
plexity entropy on ρ and on the post-circuit state, then invoke
the entropy’s monotonicity.

Fourth, one can try to prove that the resource theory of
uncomplexity has (or lacks) properties common to resource
theories [33]. For example, can allowed operations intercon-
vert any two states asymptotically (if arbitrarily many copies
are available)? Furthermore, we anticipate connections with
the resource theory of magic, another model for the difficulty
of implementing unitaries [127–131].

Fifth, the resource theory can impact holography, many-
body physics, and quantum computation. One might reframe
black-hole paradoxes in terms of uncomplexity extraction
and expenditure, then prove quantitative results using the
resource theory. For example, an agent falling into a black
hole wishes to remove firewalls from the horizon, to avoid
burning. Tossing in a thermal photon doubles the time for
which the agent remains safe [132]. How much time does a
given state—so a given amount of uncomplexity—buy? Also,
uncomplexity’s monotonicity under fuzzy circuits is expected
to relate to the switchback effect [21,23], which determines
how perturbations affect complexity’s evolution. The present
work, providing a quantitative resource theory of uncomplex-
ity as a technical tool, is hoped to galvanize further studies of
space-time’s uncomplexity.
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APPENDIX A: PROOF OF THE BRICKWORK
COMPLEXITY’S MONOTONICITY

This Appendix contains the proof of Theorem 4. We ex-
tend results in Ref. [17] from Haar-random gates to fuzzy
gates, then to monotonicity statements. Several pieces of
background are necessary. We call an arrangement of gates
an architecture. Slotting particular gates into an architecture
produces a circuit. A circuit may contain a light cone, a block
of gates that contains one qubit that links to each other qubit
via a path, perhaps unique to the latter qubit, formed from
gates (Fig. 2 of Ref. [17]).

An accessible dimension is introduced in Ref. [17]: Con-
sider choosing two-qubit gates whose fuzzy approximations
are slotted into any architecture A. The slotting-in forms a
circuit that implements a unitary. All the unitaries so im-
plementable form a set U (A). The number of degrees of
freedom needed to specify U (A) is the accessible dimension
dim(U (A)) � 4n [17]. Consider applying to |0n〉 each unitary
in U (A). The resulting states form a set that we denote by
Ustate(A).

A fuzzy gate, recall, is drawn from the group SU(4) of
two-qubit gates. Denote by dŨ the Haar measure on SU(4).
By definition, fuzzy gates are drawn according to probability
distributions of the form pU,ε (Ũ ) dŨ , for a density function
pU,ε (Ũ ) in L1. Therefore, the fuzzy-gate distribution is abso-
lutely continuous with respect to the Haar measure: Consider
any set of gates that has measure 0 with respect to the Haar
measure on SU(4)×R. The set has measure 0 also for the
fuzzy-gate distribution.

By an n-qubit Pauli string, we mean, an n-fold tensor
product of (i) one-qubit Pauli operators and (ii) one-qubit
identity operators 1. We prove the following technical version
of Theorem 1, which governs brickwork circuits (Fig. 3).

Theorem 4 (Monotonicity of exact uncomplexity: formal).
Consider the following protocol: Choose any two-qubit
gates U1,U2, . . . ,UR, for some R ∈ Z+. Let ε′ > 0, and
draw Ũ1, Ũ2, . . . , ŨR near U1,U2, . . . ,UR according to
an ε′-fuzzy distribution over SU(4)×R. Slot the resulting
gates into any brickwork architecture. Apply the resulting
circuit to |0n〉. This protocol prepares a state whose
brickwork uncomplexity is � Cmax − R. For every integer

FIG. 3. A brickwork circuit of the sort featured in Theorem 1.
Periodic boundary conditions impose a gate (green boxes) on qubits
n and 1 in each even-indexed layer.

R ∈ (0, 
(4n)), the following holds: Let V1,V2, . . . ,Vn(n−1)

denote any two-qubit gates in an n-layer brickwork
architecture. Let Ṽ1, Ṽ2, . . . , Ṽn(n−1) denote corresponding
ε-fuzzy gates, with ε > 0. With probability 1, the brickwork
uncomplexity decreases:

Cmax − Cbw([Ṽn(n−1)Ṽn(n−1)−1 . . . Ṽ1][ŨRŨR−1 . . . Ũ1]|0n〉)

< Cmax − R. (A1)

ε and ε′ can be chosen to be arbitrarily small without
affecting the theorem. To connect the formal statement above
with the main text’s informal statement (Theorem 1), we pro-
ceed as follows. We choose for the unitaries U1,U2, . . . ,UR

to form an optimal brickwork preparation circuit for |ψ〉. We
choose for ε′ to be much smaller than other parameters in the
problem. The latter choice ensures that the state transformed
by V1,V2, . . . ,Vn(n−1) is arbitrarily close to |ψ〉.

We need the following lemma, proven as Lemma 1 in
Ref. [17] and restated as Lemma 2 here.

Lemma 2. Let A denote any architecture. The states
preparable with architecture-A circuits form the set Ustate(A).
Let M ⊂ Ustate(A) denote any (semialgebraic) subset for
which dim(M ) < dim(Ustate(A)). Consider drawing an
architecture-A circuit uniformly randomly. The circuit effects
a unitary in M with probability 0.

Proof of Theorem 4 To prove that the brickwork uncom-
plexity decreases monotonically, we prove that the brickwork
complexity increases monotonically. Denote by Abw,T the T -
layer brickwork architecture, which contains T (n − 1) = R
gates total. To prove Ineq. (A1), we must prove only that

dim(Ustate(Abw,T +n)) > dim(Ustate(Abw,T )). (A2)

The reason is, Ineq. (A2) and Lemma 2 imply the following:
Consider randomly drawing a unitary effected by a brick-
work architecture Abw,T +n. The unitary has zero probability
of being implementable with a brickwork architecture whose
R = T (n − 1).

Let us prove Ineq. (A2). Consider contracting the gates
in Abw,T , then applying the resulting unitary to |0n〉. We
map a set of R two-qubit gates to a point on the unit
sphere. More generally, contraction forms a smooth map
f : SU(4)×R → S2×2n−1. The map’s greatest possible rank
equals dim(Ustate(A)), we show via semialgebraic geometry
in Ref. [17]. The map’s rank also—by definition—equals
the rank of the map’s Jacobian. Therefore, to prove
Ineq. (A2), we must identify one circuit—one point x =
(U1,U2, . . . ,UR,UR+1, . . . ,UR+n(n−1)) ∈ SU(4)×[R+n(n−1)]—
for which the map’s Jacobian has a rank > dim(Ustate(Abw,T )).

We construct that circuit as follows. Let Pj de-
note a two-local Pauli operator that acts on the same
qubits as Uj . The Jacobian’s image is spanned by
{(U ′

RU ′
R−1 . . .U ′

j+1)Pj (U ′
jU

′
j−1 . . .U ′

1)} j,P [17]. Denote by
xmax ∈ SU(4)×R a point at which the A contraction map
achieves its maximal rank, rmax. We will construct a point
xext = (U ′

1,U ′
2, . . . ,U ′

R, V ′
1,V ′

2, . . . ,V ′
n(n−1)) at which the con-

traction map’s rank exceeds the rank at rmax. (The V ′
j ’s are

gates chosen to prove a variation on Theorem 4. In the
variation, Haar-random gates replace the fuzzy gates Ṽj . By
absolute continuity, the theorem follows for fuzzy gates.)
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There exist Hermitian operators Hj such that the following
is true: The map has a Jacobian whose image at xmax

is spanned by {HjURUR−1 . . .U1|0n〉} j=1,2,...rmax =: {|v j〉}.
These vectors’ span excludes some of the states formed
by applying an n-qubit Pauli string to URUR−1 . . .U1|0n〉.1
The gates V ′

1,V ′
2, . . . ,V ′

n(n−1) transform some excluded
Pauli string P into Z�, for a to-be-specified qubit �:
(V ′

n(n−1)V
′

n(n−1)−1 . . .V ′
1 ) P (V ′†

1 V ′†
2 . . .V ′†

n(n−1)) = Z�. The
foregoing claim is true, Ref. [17] shows, under two necessary
conditions: (i) The gates V ′

1,V ′
2, . . . ,V ′

n(n−1) are in an architec-
ture that contains a light cone. (ii) � indexes the light cone’s
final qubit, which connects to all the other light-cone qubits
via paths formed from gates. Both conditions are satisfied by
an n(n − 1)-gate brickwork circuit and � = 1. All the states
(V ′

n(n−1)V
′

n(n−1)−1 . . .V ′
1 )Hj (V

′†
1 V ′†

2 . . .V ′†
n(n−1))(U

′
RU ′

R−1 . . .U ′
1)

× |0n〉 and Z�(U ′
RU ′

R−1 . . .U ′
1)|0n〉 (i) are in the Jacobian’s

image and (ii) are linearly independent by assumption.
Therefore, the contraction map’s Jacobian has a rank
dim(Ustate(Abw,T )).

Therefore, Ineq. (A2) holds for circuits extended with
Haar-random gates V ′

j . The fuzzy-gate probability distribution
is absolutely continuous with respect to the Haar measure, as
explained in the beginning of this Appendix. Therefore, The-
orem 4 is true if fuzzy gates replace the Haar-random gates.

APPENDIX B: MIXED-STATE COMPLEXITY AND THE
COMPLEXITY ENTROPY

This Appendix elaborates on quantifiers of mixed-state
complexity. We situate the complexity entropy (3) in the
landscape of such quantifiers and provide intuition about the
entropy. Throughout this Appendix, ρ denotes an arbitrary
n-qubit mixed state.

Following Brown and Susskind, we quantify complexity
in terms of a state’s usefulness for quantum computation. We
therefore seek a notion of complexity that assigns to 1⊗n/2n

a complexity similar to a maximally complex pure state’s.
Our resource theory is designed to reflect such a notion of
complexity. Choosing fuzzy operations to be free ensures that
every state can be mapped to the maximally mixed state for
free, in variant 2 of the resource theory. The ordering of states
in our resource theory is therefore compatible with assigning
a high complexity to the maximally mixed state.

Our resource theory’s notion of complexity is further moti-
vated by the physical justification for fuzzy operations. Many

1We can prove this claim by contradiction: Assume that, for
all Pauli operators P, PUrUr−1 . . .U1|0n〉 ∈ span{|v j〉}. The Pauli
operators form an orthonormal basis for the Hermitian opera-
tors defined on the same Hilbert space. Therefore, for every state
|ψ〉 in the space, we can build the Hermitian operator A′ =
|ψ〉〈0n|(U ′†

1 U ′†
2 . . .U ′†

r ) + H.c. By the assumption we mean to con-
tradict, A′(U ′

rU
′
r−1 . . .U ′

1)|0n〉 = |ψ〉 ∈ span{|v j〉}. However, we can
derive a contradiction to the foregoing equation. According to the
text above, the Jacobian’s image has a submaximal rank. Therefore,
span{|v j〉} is not the entire space. Therefore, we can choose for
|ψ〉 to be orthogonal to the |v j〉. However, we have already proved
that |ψ〉 ∈ span{|v j〉}. We have proven a contradiction, so our first
premise is false.

resource theories, such as the commonest resource theory of
thermodynamics [40], have the following property. Suppose
that the agent performs a free operation that is ε-close to
the desired operation, perhaps because noise corrupts the
implementation. The applied operation prepares the desired
output state to within some error bounded by ε. Therefore,
statements made using this resource theory are robust with
respect to small errors in an operation’s implementation. This
property is essential, lending a resource theory its physical,
operational significance. In contrast, suppose that a resource
theory predicted that a transformation ρ �→ σ were possible
via some operation, yet a slightly different operation would
produce a state far from σ . The resource theory would lose its
operational significance.

Requiring similar robustness of the uncomplexity resource
theory leads to the choice of fuzzy operations as the free
operations. The free operations are defined in terms of ele-
mentary operations that can be composed. If the agent wishes
to implement some unitary U , they must decompose U into el-
ementary operations. Each elementary operation might suffer
from some imperfection in any practical setting. Therefore, to
render the resource theory robust with respect to implemen-
tation errors, we must ensure that physical statements about
the resource theory are robust with respect to perturbations
affecting the desired elementary operations. A natural way
of enforcing this property is to explicitly model the noise
affecting the implemented gates. This strategy results in fuzzy
operations’ being the free operations.

Fuzzy operations suggest the complexity entropy as an
alternative approach to defining mixed-state complexity,
quantifying a state’s usefulness in quantum computation. In-
stead of defining one complexity measure for ρ, we define a
family of measures parameterized by r ∈ Z�0. For any fixed
r, we ask how many |0〉 qubits can be extracted from ρ, with a
probability � η, via an application of � r fuzzy gates. This
quantity essentially equals the complexity entropy Hr,η

h (ρ),
according to Theorem 2.

We could invert this relation to solve for the minimal
number r of gates required to extract a fixed number k of |0〉
qubits. However, two problematic situations might arise. First,
ρ might be fundamentally mixed: Extracting a large number
k of |0〉 qubits might be impossible, even with arbitrarily
many gates and with an arbitrarily small fuzziness parameter
ε. Second, even if ρ is low-rank, the number r of perfect gates
needed to extract k pure |0〉 qubits may be too large to be
implementable with fuzzy gates, if ε is too large. In each of
these two situations, the number r of gates required to extract
k pure |0〉 qubits is ill-defined. Therefore, this number—the
inverted relation between r and k—forms an incomplete mea-
sure of mixed-state complexity. The complexity entropy offers
a well-defined alternative.

We now expound upon the motivation for the complexity
entropy’s definition. The definition is inspired by the strong
complexity of Brandão et al. [16]. They quantify the dis-
tinguishability of a state ρ from the maximally mixed state
using a measurement whose complexity is limited. More
precisely, they quantify the probability of successfully distin-
guishing ρ from 1⊗n/2n when either state is provided with
probability 1/2. Their distinguishability measure serves as an
extension of the trace distance, which quantifies the optimal
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efficiency with which states can be distinguished through
arbitrarily complex measurements. We consider an alterna-
tive distinguishability setting, in which the prior probabilities
of receiving ρ or 1⊗n/2n are unknown. If the measurement
can be arbitrarily complex, the probability of successfully
identifying 1⊗n/2n, while successfully identifying ρ with
probability at least η, is given by the hypothesis-testing en-
tropy of ρ. Our complexity entropy is hence an extension of
the hypothesis-testing entropy. Therefore, the complexity en-
tropy importantly has an operational significance beyond the
strong complexity of Ref. [16]: the number of |0〉 qubits ex-
tractable from ρ with a bounded number of limited-precision
gates (Theorem 2). The complexity entropy’s operational
significance is underscored by its having units—namely,
bits.

The complexity entropy (Definition 2) can be understood
through two limits. Synopsized in the main text, they are
detailed here. In both cases, we suppose that ρ = |ψ〉〈ψ | is
pure, for simplicity.

First, let the number r of performable gates be at least
the number of gates needed to prepare |ψ〉. Ur undoes the
gates in |ψ〉. The tensor factors in (2) can therefore be
|0〉〈0|’s: Hence Q = Ur |0n〉〈0n|U †

r can project onto one low-
dimensional subspace, such that Tr(Q) = 1 is small, as the
minimization requires. If the projected-onto subspace is so
small, is Tr(Q|ψ〉〈ψ |) � η violated? No, as Ur |ψ〉 = |0n〉 by
assumption. Therefore, if |ψ〉 is uncomplex while many gates
are available, Hr,η

c (|ψ〉) = 0.
Contrariwise, let |ψ〉 be highly complex and only a few

gates be performable (let r be small). Most qubits, probed
locally, likely resemble 1/2. Each 1/2 halves Tr(Q|ψ〉〈ψ |) if
multiplying a |0〉〈0| in Q. To satisfy Tr(Q|ψ〉〈ψ |) � η, Q must
contain many 1’s. Each 1 doubles Tr(Q). In the extreme case,
Q = 1⊗n, and Hr,η

c (|ψ〉) = n. Therefore, if |ψ〉 is complex
while few gates are performable, Hr,η

c (|ψ〉) � n.
We conclude this Appendix by commenting on the dis-

connect between the notion of preparation complexity and
the notion of distinguishability from the maximally mixed
state. The preparation complexity quantifies the elementary
operations required to prepare a state, while the distinguisha-
bility quantifies the complexity of a measurement required to
tell a state from 1⊗n/2n. Even for pure states, the notions
differ widely [16]. Consider |0〉 ⊗ |ψn−1〉, wherein |ψn−1〉 is
highly complex. This state’s circuit complexity is ∼2n. Yet
measuring the first qubit in the computational basis distin-
guishes the state from the maximally mixed state with high
probability. Hence this state’s strong complexity vanishes.
For all pure states |ψ〉, the preparation complexity exceeds
the complexity of distinguishing |ψ〉 from 1⊗n/2n. Indeed, a
preparation circuit for |ψ〉 automatically provides a scheme
for distinguishing |ψ〉 from 1⊗n/2n [16]. For mixed states
ρ, however, the preparation complexity can lie below the
complexity of distinguishing ρ from 1⊗n/2n. (This discussion
might depend on the specifics of how either notion of com-
plexity is defined. For concreteness, we regard the purification
complexity as the preparation complexity of ρ. We also regard
the complexity entropy as quantifying the distinguishability of
ρ from 1⊗n/2n.) 1⊗n/2n is easy to prepare, provided we have
n pure ancillary qubits. However, 1⊗n/2n is indistinguishable

from itself; in the language of the complexity entropy, ex-
tracting |0〉 qubits from 1n/2n is impossible, regardless of our
computational power. This discrepancy may result partially
from the computational model used to define the purification
complexity, which involves pure ancillary qubits. Overall, we
see no physical reason to worry about the existence of two dis-
tinct notions of complexity. They quantify different physical
properties of a state—even pure states.

APPENDIX C: UNCOMPLEXITY-EXTRACTION PROOF

First, we prove a lemma used in the proofs of Theorems
2 and 3: Suppose that an arbitrary state ω undergoes a de-
sired r-gate unitary Ur or a fuzzy approximation Ũr . The
transformed states, UrωU †

r and ŨrωŨ †
r , are rε-close in trace

distance. Then, we complete the proof of Theorem 2.
Lemma 3. Let ω denote an arbitrary n-qubit state. Consider

transforming ω by perfectly implemented gates V1,V2, . . . ,Vr .
Each Vj is defined on C2n but transforms just one qubit
subspace nontrivially. The gates effect the unitary Ur :=
VrVr−1 . . .V1 and yield the state UrωU †

r . Suppose that the
gates implemented are ε-fuzzy. Analogously, denote the fuzzy
gates by Ṽ1, Ṽ2, . . . , Ṽr and the effected unitary by Ũr :=
ṼrṼr−1 . . . Ṽ1. The fuzzy gates yield the state ŨrωŨ †

r . The
transformed states are rε-close in trace distance:

T (UrωU †
r , ŨrωŨ †

r ) � rε. (C1)

Proof. We prove the lemma in two steps. First, consider
transforming an arbitrary n-qubit state τ with a perfectly
implemented gate Vj or a fuzzy gate Ṽj . The fuzzy gates are
ε-close to the perfect gates in operator norm, consistently with
Definition 1:

‖Ṽj − Vj‖∞ � ε ∀ j = 1, 2, . . . , r. (C2)

Therefore, the transformed states are close in the sense that

T (VjτV †
j , ṼjτṼ †

j )

� T (ṼjτṼ †
j , VjτṼ †

j ) + T (VjτṼ †
j , VjτV †

j ) (C3)

= 1

2

∥∥(Ṽj − Vj )τṼ †
j

∥∥
1 + 1

2

∥∥Vjτ (Ṽj − Vj )
†∥∥

1 (C4)

= 1

2

∥∥(Ṽj − Vj )τ
∥∥

1 + 1

2

∥∥τ (Ṽj − Vj )
†∥∥

1 (C5)

= ∥∥(Ṽj − Vj )τ
∥∥

1 (C6)

� ‖Ṽj − Vj‖∞ ‖τ‖1 (C7)

� ε. (C8)

Inequality (C3) follows from the triangle inequality. Equa-
tion (C5) follows from the trace distance’s unitary invariance.
Equation (C6) follows from the property ‖A‖1 = ‖A†‖1 of all
linear operators A. Inequality (C7) follows from Hölder’s in-
equality. Inequality (C8) follows from (C2) and from ‖τ‖1 =
1.

Second, we prove Ineq. (C1) inductively. The bound (C1)
holds when r = 1:

T (UrωU †
r , ŨrωŨ †

r ) = T (V1ωV †
1 , Ṽ1ωṼ †

1 ) � ε. (C9)

Suppose that Ineq. (C3) holds for all r′ = 1, 2, . . . , r − 1.
Define Ur−1 := Vr−1Vr−2 . . .V1 and Ũr−1 := Ṽr−1Ṽr−2 . . . Ṽ1.
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We can use these unitaries to bound the original trace distance
as

T (UrωU †
r , ŨrωŨ †

r )

� T (VrUr−1ωU †
r−1V

†
r , VrŨr−1ωŨ †

r−1V
†

r )

+ T (VrŨr−1ωŨ †
r−1V

†
r , ṼrŨr−1ωŨ †

r−1Ṽ
†

r ) (C10)

� (r − 1)ε + ε (C11)

= rε. (C12)

Inequality (C10) follows from the triangle inequality. In-
equality (C11) follows from (i) the trace distance’s unitary
invariance, (ii) the inductive hypothesis, and (iii) the appli-
cation of Ineq. (C8) to τ = Ũr−1ωŨ †

r−1.
Having proved a lemma used in Theorems 2 and 3, we

complete the proof of Theorem 2, which we restate here.
Theorem 2 (Uncomplexity extraction). Let ρ, r, and δ be

as above, and assume that δ � rε. For every parameter
value η ∈ [1 − (δ − rε)2, 1], some protocol extracts w =
n − Hr,η

c (ρ) qubits δ-close to |0w〉 in trace distance. Con-
versely, every uncomplexity-extraction protocol obeys w �
n − Hr,1−δ

c (ρ).
Proof. First, we prove that extracting w = n − Hr,η

c (ρ) un-
complex |0〉’s from ρ is achievable. Then, we show that this
number is optimal: No protocol can extract more |0〉’s.

1. Achievability

Let ρ denote any n-qubit state, η ∈ (0, 1], and r ∈ Z�0.
Consider any Q that achieves the minimization in Eq. (3). Q
projects n − Hr,η

c (ρ) qubits onto |0〉. Without loss of gener-
ality, we index those qubits as 1, 2, . . . , n − Hr,η

c (ρ). Denote
that set of qubits by W ; and the rest of the qubits, by W̄ . De-
note by Ur the (� r)-qubit unitary used to implement Q: Q =
U †

r (|0n−Hr,η
c (ρ)〉〈0n−Hr,η

c (ρ)| ⊗ 1⊗Hr,η
c (ρ) )Ur . By the constraint in

the definition (2),

η � Tr(Qρ) = Tr
(
U †

r

[|0n−Hr,η
c (ρ)〉〈0n−Hr,η

c (ρ)| ⊗ 1⊗Hr,η
c (ρ)]Urρ

)
(C13)

= TrW̄

(
TrW (UrρU †

r )|0n−Hr,η
c (ρ)〉〈0n−Hr,η

c (ρ)|).
(C14)

The trace’s cyclicality implies the final equality. Equa-
tion (C14) implies that TrW (UrρU †

r ) has a fidelity � η to
|0n−Hr,η

c (ρ)〉〈0n−Hr,η
c (ρ)|. By the relationship between the fidelity

and the trace distance [[133], Theorem 9.3.1],

T (TrW (UrρU †
r ), |0n−Hr,η

c (ρ)〉〈0n−Hr,η
c (ρ)|) �

√
1 − η. (C15)

Therefore, if Ur is implemented perfectly—if the gates are im-
plemented perfectly—the protocol extracts w = n − Hr,η

c (ρ)
uncomplex |0〉’s with accuracy � √

1 − η.

Now, suppose that the gates are ε-fuzzy. Attempting to
implement Ur , the agent actually implements an approx-
imation Ũr . By Lemma 3, T (UrρU †

r , ŨrρŨ †
r ) � rε. The

trace distance is contractive under all completely positive,
trace-preserving maps, including the partial trace. There-
fore, T (TrW (UrρU †

r ), TrW (ŨrρŨ †
r )) � rε. We combine this

inequality with Ineq. (C15), using the triangle inequality:

T (TrW (ŨrρŨ †
r ), |0n−Hr,η

c (ρ)〉〈0n−Hr,η
c (ρ)|)

� T (TrW (ŨrρŨ †
r ), TrW (UrρU †

r )) (C16)

+ T (TrW (UrρU †
r ), |0n−Hr,η

c (ρ)〉〈0n−Hr,η
c (ρ)|)

�
√

1 − η + rε. (C17)

Therefore, for δ � √
1 − η + rε, or η � 1 − (δ − rε)2, one

can extract w = n − Hr,η
c (ρ) uncomplex |0〉’s, with accuracy

� δ, using ε-fuzzy operations.

2. Optimality

Again, denote by W the set of not-discarded qubits, and in-
dex them as the first qubits. Denote by W̄ the set of discarded
qubits. By the constraints on the extraction protocol, the final
state must be δ-close to the |0w〉〈0w|: If Ũr denotes the circuit
performed with � r fuzzy gates,

T (TrW̄ (ŨrρŨ †
r ), |0w〉〈0w|) � δ. (C18)

We can recast this result in terms of hypothesis testing, using
the following quantum-information result: Let σ and γ denote
quantum states defined on the same Hilbert space, and let
� denote an operator such that 0 � � � 1. According to
Corollary 9.1.1 of Ref. [133],

T (σ, γ ) � Tr(�γ ) − Tr(�σ ). (C19)

Let σ = TrW̄ (ŨrρŨ †
r ), and let γ = � = |0w〉〈0w|. We substi-

tute into Ineq. (C19), combine the result with Ineq. (C18), and
rearrange terms. The result is

Tr(|0w〉〈0w|TrW̄ (ŨrρŨ †
r )) � 1 − δ. (C20)

Let us rewrite the trace’s argument such that each factor is de-
fined on the n-qubit Hilbert space. Padding the outer product
with identity operators at the discarded sites yields

|0w〉〈0w| ⊗ 1⊗(n−w) =: Q0. (C21)

Therefore, by Eq. (C20), Tr(Q0[ŨrρŨ †
r ]) � 1 − δ. Let us

cycle the Ũ †
r leftward. Packaging up Ũ †

r Q0Ũr =: Q̄ implies
Tr(Q̄ρ) � 1 − δ. By the foregoing inequality, and by the num-
ber of the fuzzy gates that constitute Ur , Q̄ is in Mr . By the
minimum in Eq. (3),

Hr,1−δ
c (ρ) � log2(Tr(Q̄)) = log2(2n−w ) = n − w. (C22)

The penultimate equality follows from Eq. (C21).

APPENDIX D: UNCOMPLEXITY-EXPENDITURE PROOF

This Appendix contains the proof of Theorem 3. We must
upper-bound the cost of simulating a state ρ δ-approximately.
First, we prove Theorem 3 in the absence of fuzziness
(Lemma 4). Then, we use Lemma 3 to extend the proof to
fuzzy gates.

Lemma 4. Let ρ denote an arbitrary n-qubit state. Let r
and δ be as described above Theorem 3, but let all gates be
implemented perfectly (ε = 0). For every δ ∈ (0, 1], every
η ∈ (0, 1], and every (n − w)-qubit state σ , ρ can be imitated
with w = n − Hr,η

c (ρ) uncomplex |0〉’s.
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Proof. We index the qubits such that the referee’s measure-
ment operator has the form

Qref = U †
r

(|0w′ 〉〈0w′ | ⊗ 1⊗(n−w′ ))Ur, (D1)

for some w′ ∈ {1, 2, . . . , n} and some unitary Ur imple-
mentable with � r gates. By the constraints on the referee,
Tr(Qrefρ) � η. Hence Qref satisfies the constraint in the defi-
nition 2 of Hr,η

c (ρ).
Let the agent request w = w′ uncomplex |0〉’s. The agent

can perform the inverse U †
r of the referee’s unitary. The simu-

lacrum acquires the form

ρ̄ = U †
r (|0w〉〈0w| ⊗ σ )Ur . (D2)

If the referee receives ρ̄, their probability of guessing ρ is
Tr(Qref ρ̄ ) = 1 � 1 − δ. Hence ρ̄ satisfies the constraint on the
agent.

We can derive two expressions for log2(Tr(Qref )). First,
by Eq. (D1) and w′ = w, log2(Tr(Qref )) = n − w. Second,

Qref was chosen to minimize Tr(Qref 1/2n). Therefore, Qref

achieves the minimum in the definition (2). Therefore,
log2(Tr(Qref )) = Hr,η

c (ρ). Equating the two expressions for
the log, and solving for w, yields w = n − Hr,η

c (ρ).
We have proved a fuzziness-free variation on Theorem 3.

We extend that proof to prove the theorem itself, assum-
ing that all gates applied are ε-fuzzy. First, we restate
Theorem 3.

Theorem 3 (Uncomplexity expenditure). Let ρ denote any
n-qubit state. Let r and δ be as above, and assume that the error
tolerance is δ � 2rε. For every η ∈ (0, 1], and for every (n −
w)-qubit state σ , ρ can be imitated with w = n − Hr,η

c (ρ)
uncomplex |0〉’s.

Proof. Recall the assumption that δ � 2rε. Due to gate
fuzziness, the referee implements the fuzzy operation Ũ ref

r , in-
stead of Ur , and effects the POVM Q̃, instead of Q̄. Likewise,
the agent implements the fuzzy operation Ũ agt

r , instead of Ur ,
and constructs the state ρ̃, instead of ρ̄. The referee identifies
ρ̃ as ρ with probability at least 1 − δ, since

Tr(Q̃ρ̃ ) = Tr
({

Ũ ref†
r

[|0w〉〈0w| ⊗ 1⊗(n−w)
]
Ũ ref

r

}{
Ũ agt†

r [|0w〉〈0w| ⊗ σ ]Ũ agt
r

})
(D3)

= Tr
([|0w〉〈0w| ⊗ 1⊗(n−w)

]
Ũ ref

r Ũ agt†
r [|0w〉〈0w| ⊗ σ ]Ũ agt

r Ũ ref†
r

)
(D4)

� Tr
([|0w〉〈0w| ⊗ 1⊗(n−w)][|0w〉〈0w| ⊗ σ ]

)
− T

(|0w〉〈0w| ⊗ σ, Ũ ref
r Ũ agt†

r [|0w〉〈0w| ⊗ σ ]Ũ agt
r Ũ ref†

r

)
(D5)

= 1 − T
(
Ũ ref†

r [|0w〉〈0w| ⊗ σ ]Ũ ref
r , Ũ agt†

r [|0w〉〈0w| ⊗ σ ]Ũ agt
r

)
(D6)

� 1 − T
(
Ũ ref†

r [|0w〉〈0w| ⊗ σ ]Ũ ref
r , U †

r [|0w〉〈0w| ⊗ σ ]Ur
)

− T
(
U †

r [|0w〉〈0w| ⊗ σ ]Ur, Ũ agt†
r [|0w〉〈0w| ⊗ σ ]Ũ agt

r

)
(D7)

� 1 − 2rε (D8)

� 1 − δ. (D9)

Inequality (D5) follows by the application of Ineq. (C19)
to σ = Ũ ref

r Ũ agt†
r [|0w〉〈0w| ⊗ σ ]Ũ agt

r Ũ ref†
r , γ = |0w〉〈0w| ⊗ σ ,

and � = |0w〉〈0w| ⊗ 1⊗(n−w). Equation (D6) follows from the
trace distance’s unitary invariance. Inequality (D7) follows
from the triangle inequality. Inequality (D8) follows from
Lemma 3. Therefore, the agent can imitate ρ with probabil-
ity � 1 − δ using (as shown in Lemma 4) w = n − Hr,δ

c (ρ)
uncomplex |0〉’s.

APPENDIX E: MONOTONICITY OF THE COMPLEXITY
NEGENTROPY IN TWO CASES

This section supports our conjecture that the complexity
negentropy declines monotonically under fuzzy operations
(Conjecture 1). We show that the complexity entropy grows
monotonically in two cases. In both, the error-intolerance
parameter η = 1. The reason is, our techniques derive from a
proof of the linear growth, under random circuits, of the exact
complexity, the least number of two-qubit gates required to
prepare an n-qubit state |ψ〉 from |0n〉 exactly [17]. Define
as the approximate complexity the least number of two-qubit
gates required to prepare |ψ〉 approximately. We would have

to prove the approximate complexity’s linear growth to prove
that Hr,η

c increases monotonically under fuzzy operations
when η < 1. The approximate proof would require more than
the dimension counting used here; we would need insights
into the geometry of the set of unitaries implemented by local
quantum circuits.

Our proof involves two definitions, which we repeat from
the main text: (i) Define an architecture as the layout of
gates in a quantum circuit. (ii) Define as Ek,r the ensem-
ble of n-qubit states formed as follows: Pick k = 0, 1, . . . , n
qubits uniformly randomly; and pick a k-qubit state vector
|φ〉 Haar-randomly. Prepare those qubits in |φ〉. Pad |φ〉 with
|0〉’s, to produce |φ〉|0n−k〉. Perform a circuit, with a random
architecture, of any � r fuzzy gates [134].

Lemma 1 (First case of the complexity negentropys mono-
tonicity). Consider drawing a state from Ek,r uniformly
randomly, then performing an arbitrary fuzzy gate. Let the
number of chosen qubits be k > log2(15r). The complexity
negentropy n − Hr;1

c does not increase, with probability 1.
Proof. Consider the “uncomplex” POVM elements Q ∈

Mr for which log2(Tr(Q)) � k. Consider the states |ψ〉
for which, for some such Q, Tr(Q|ψ〉〈ψ |) = 1. All the
Q ∈ Mr are mutually orthogonal projectors. Therefore, the
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aforementioned |ψ〉’s form the set

Ur,k :=
⋃

Q∈Mr :
log2(Tr(Q))�k

Im(Q)

=
⋃

Q∈Mr :
log2(Tr(Q))�k

⋃
π∈Sn

{
UrUr−1 . . .U1 π |φ〉|0n−k〉 :

× Uj is two-local ∀ j, |φ〉 ∈ (C2)⊗k
}
. (E1)

The projector Q has an image Im(Q), and Sn denotes the group
of the permutations of n objects. Since |0k〉 is a state |φ〉 ∈ Ck ,
Ur,0 ⊆ Ur,1 ⊆ . . . ⊆ Ur,k .

To characterize the U ’s further, we denote by SD

the sphere in RD+1 [135]. Also, we identify C2k
with

R2×2k
. The Ur,k are the images of the polynomial con-

traction maps S2×2k−1 × SU(4)×R → (C2)⊗k . Therefore, by
the Tarski-Seidenberg principle [136], the Ur,k are semial-
gebraic sets. (A semialgebraic set consists of the solutions
to a finite set of polynomial equations and inequalities
over the real numbers.) Every semialgebraic set decom-
poses as a union of smooth manifolds [136]. The greatest
manifold dimension is the semialgebraic set’s dimension
[136]. Therefore, we can bound dim(Ur,k ) as follows.
Since {|φ〉|0n−k〉} ⊆ Ur,k , dim(Ur,k ) � dim(S2×2k−1) = 2 ×
2k − 1. According to Lemma 1, k > log2(15r). Therefore,
2 × 2k − 1 > 2 × 2k−1 − 1 + 15r. By parameter counting,
dim(Ur,k−1) � 2 × 2k−1 − 1 + 15r. Therefore, dim(Ur,k−1) <

dim(Ur,k ). Therefore, by Ref. [[17], Lemma 1], Ur,k−1 forms a
measure-0 set in Ur,k .

We apply the above conclusion as follows. Consider draw-
ing a state uniformly randomly from the ensemble Ek,r . If the
state has a complexity entropy Hr,1

c � k − 1, the state is in
Ur,k−1, which forms a measure-0 set in Ur,k , we just concluded.
Therefore, the drawn state satisfies Hr,1

c � k − 1 with proba-
bility 0. Every unitary acts on Ur,k as a diffeomorphism and
so does not change the set’s dimension. (The unitary maps
Ur,k to a set of “just as many” unitaries.) Fuzzy operations are
unitaries, so applying a fuzzy operation cannot decrease Hr,1

c .

Having proved that the complexity negentropy decreases
monotonically in one case, we proceed to the second case.
Denote by Ek,A the ensemble defined as Ek,r , except that the
r-gate fuzzy circuit has the architecture A.

Lemma 5 (Second case of the complexity negentropy’s
monotonicity). For every k < n and r = 0, 1, . . . , 2 × �(2n −
1 − 2k )/15�, there exists an architecture A for which the fol-
lowing holds: Let A′ denote any architecture that contains a
light cone. Consider drawing (i) a state from Ek,A and (ii) an
architecture-A′ circuit. Consider following A with the light-
cone–containing A′, and call the extended architecture Aext.
Running the circuit on the state decreases the complexity
negentropy n − Hr,1

c , with probability 1 over the ensemble
Ek,Aext .

Proof. Define, similarly to Eq. (E1), the set

Uk,A :=
⋃

Q∈Mr :
log2(Tr(Q))�k

{
UrUr−1 . . .U1|φ〉|0n−k〉 :

× circuit has architecture A, |φ〉 ∈ (C2)⊗k
}
. (E2)

We proceed similarly to the proof of Theorem 4: Let the
architecture A be such that dim(Uk,A) has the greatest value
achievable with any (� r)-gate architecture. We must prove
only that dim(Uk,A) < dim(Uk,Aext ): If this inequality holds,
then, by Lemma 2, randomly drawing a state from Ek,Aext has 0
probability of being in Uk,Ã, for every architecture Ã with � r
gates.

The dimension dim(Uk,A) equals the dimension of a con-
traction map’s Jacobian. The Jacobian’s image is spanned by a
set of vectors |v j〉 ∈ R2×2n−1. We can choose for the vectors to
have the form |v j〉 = Aj U1U2 . . .Ur |0n−k〉|φ〉, for Hermitian
operators Aj . There is a Pauli operator P such that |v′〉 =
PU1U2 . . .Ur |0n−k〉|φ〉 /∈ span{|v j〉}, if the Jacobian’s image
has a rank less than the greatest value possible, 2 × 2n − 1
[137]. The rank’s submaximality is guaranteed by the as-
sumptions k < n and r = 0, 1, . . . , 2 × �(2n − 1 − 2k )/15�.
We can follow A with an architecture-A′, depth-R′ circuit.
Applying the procedure of Ref. [17] to the Pauli operator P,
we find a higher-rank point for Aext: dim(Uk,A) < dim(Uk,Aext ).
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