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The eigenstate thermalization hypothesis (ETH) explains why nonintegrable quantum many-body
systems thermalize internally if the Hamiltonian lacks symmetries. If the Hamiltonian conserves one
quantity (“charge”), the ETH implies thermalization within a charge sector—in a microcanonical subspace.
But quantum systems can have charges that fail to commute with each other and so share no eigenbasis;
microcanonical subspaces may not exist. Furthermore, the Hamiltonian will have degeneracies, so the ETH
need not imply thermalization. We adapt the ETH to noncommuting charges by positing a non-Abelian
ETH and invoking the approximate microcanonical subspace introduced in quantum thermodynamics.
Illustrating with SU(2) symmetry, we apply the non-Abelian ETH in calculating local operators’ time-
averaged and thermal expectation values. In many cases, we prove, the time average thermalizes. However,
we find cases in which, under a physically reasonable assumption, the time average converges to the
thermal average unusually slowly as a function of the global-system size. This work extends the ETH, a
cornerstone of many-body physics, to noncommuting charges, recently a subject of intense activity in
quantum thermodynamics.

DOI: 10.1103/PhysRevLett.130.140402

Nonintegrable closed quantum many-body systems
thermalize internally, in the absence of conserved observ-
ables, or charges. Few-body operators O equilibrate to the
expectation values they would have in the canonical state
ρcan ∝ e−βH. H denotes the Hamiltonian, whose expect-
ation value determines the inverse temperature β [1]. The
eigenstate thermalization hypothesis (ETH) explains this
thermalization [2–4]: Let jαi denote the energy eigenstates;
Eα, the eigenenergies; and Oαα0 ≔ hαjOjα0i, matrix ele-
ments representing the operator.O andH satisfy the ETH if
Oαα0 has a certain structure, reviewed below. If Oαα0 does
and H is nondegenerate, O thermalizes: Its time-averaged
expectation value approximately equals its thermal expect-
ation value. The difference is of OðN−1Þ, if N denotes the
global system size. (We use big-O notation as in many-
body physics, meaning “scales as.”) These results explain
behaviors observed numerically and experimentally across
condensed matter; atomic, molecular, and optical physics;
and high-energy physics [1,5–14].
The argument for thermalization relies on the

Hamiltonian’s nondegeneracy and on matrix-element struc-
ture. Both postulates are questionable if H conserves
charges [15]. If H has an Abelian symmetry, the energy
spectrum can lack degeneracies. Since the charges

commute, they share eigenspaces—charge sectors. In each
shared sector, the ETH applies. For example, consider N
qubits (quantum two-level systems, or spins). H can
conserve the total spin’s z component, Sz, by being U(1)
symmetric. The ETH is often applied in an Sz sector,
wherein the ETH holds and implies thermalization.
A non-Abelian symmetry can eliminate our recourse

to charge sectors: Such a symmetry is generated by charges
that fail to commutewith each other and so cannot necessarily
have definite values simultaneously—cannot necessarily
share sectors governable by the ETH. Moreover, non-
Abelian symmetries force degeneracies on H, having multi-
dimensional irreducible representations. Finally, how O
transforms under the symmetry operations constrains the
matrix elements Oαα0 in opposition to the ETH.
For example, consider again an N-qubit system. H can

conserve the total spin components Sa¼x;y;z, by being SU(2)
symmetric. The energy spectrum splits into degenerate
multiplets labeled by total spin quantum numbers sα. Only
the singlets, whose sα ¼ 0, are simultaneous eigenspaces of
Sx;y;z. Furthermore, the matrix elements Oαα0 obey the
Wigner–Eckart theorem [16], conflicting with the ETH.
Non-Abelian symmetries are ubiquitous in quantum

many-body physics [17,18]. They grace systems including
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complex nuclei and atoms [19], Heisenberg models in
condensed matter [20,21], gauge theories [22], and
Wess-Zumino-Witten models [23–26]. Hence the apparent
conflict between non-Abelian symmetries and the ETH
impacts our basic understanding of diverse, prominent
models.
To overcome the conflict, we propose a non-AbelianETH.

We apply it to SU(2) symmetry for simplicity, expecting
results to generalize. Using the non-Abelian ETH, we
compute two averages of few-body operators O: time-
averaged and thermal expectation values. For many oper-
ators and initial states, the time average agrees with the
thermal average: Differences are OðN−1Þ, as without non-
commuting charges [27,28]. For certain operators and initial
states, however, the time average may deviate from the
thermal prediction by anomalously large corrections
∼N−1=2. This result holds under a physically reasonable
assumption about the non-Abelian analog of Oαα0 .
Below, we review the conventional ETH. We then intro-

duce our setup, present the non-Abelian ETH [Eq. (14)], and
apply it to calculate operators’ thermal and time-averaged
expectation values. Finally, we describe opportunities estab-
lished by our results. This work extends the ETH, a mainstay
of many-body physics, to the more fully quantum domain of
noncommuting charges and so to a growing subfield of
quantum-information thermodynamics [29–63].
Review of conventional ETH.—Let the Hamiltonian H,

energy eigenstates jαi, eigenenergies Eα, operator O, and
matrix elements Oαα0 ≔ hαjOjα0i be defined as in the
Introduction. The operator and Hamiltonian satisfy the
ETH if

Oαα0 ¼ OðEÞδα;α0 þ e−SthðEÞ=2fðE;ωÞRαα0 : ð1Þ

The relevant energies average to E ≔ ðEα þ Eα0 Þ=2, their
difference is ω ≔ Eα − Eα0 , OðEÞ and fðE;ωÞ are real
functions that vary smoothly with the energy density E=N,
SthðEÞ denotes the thermodynamic entropy (logarithm of
the density of states) at energy E, δα;α0 denotes the
Kronecker delta, and the Rαα0 are erratically varying
Oð1Þ numbers [64–66]. The first, “diagonal” (α ¼ α0) term
in Eq. (1) contains the microcanonical expectation value
OðEÞ. The thermodynamic entropy SthðEÞ exponentially
suppresses the second, “off-diagonal” term.
If O and a nondegenerate H satisfy the ETH, O

thermalizes [1,28]: Let N denote the system’s size. The
system begins in a normalized state jψð0Þi ¼ P

α Cαjαi
with an extensive energy E ≔ hHi ¼ OðNÞ. We denote
expectation values by h·i ≔ hψð0Þj · jψð0Þi. Let the energy
variance, varðHÞ ≔ hH2i − E2, be at most OðNÞ.
At time t, the operator’s expectation value is

hOit ¼
X
α

jCαj2Oαα þ
X
α≠α0

C�
αCα0eiðEα−Eα0 Þt=ℏOαα0 : ð2Þ

Consider averaging this value over an infinite time:
hOit ≔ limt→∞ð1=tÞ

R
t
0 dt

0hOit0 . As H lacks degeneracies,
phase cancellations make the second term average to
zero: hOit ¼

P
α jCαj2Oαα.

To the first term, we apply a strategy that will echo in our
noncommuting-charge arguments. By the ETH [Eq. (1)],
Oαα ≈OðEαÞ can be Taylor expanded about Eα ¼ E.
The zeroth-order term yields hOit ≈OðEÞ, by the state’s
normalization. The first-order term vanishes, by the defi-
nition of E. All higher-order terms yield corrections
≤ OðN−1Þ, by the energy-variance bound and the
smoothness of OðEÞ. Hence the time average hOit ¼
OðEÞ þOðN−1Þ approximately equals the microcanonical
average. So does the canonical average, TrðOρcanÞ ¼
OðEÞ þOðN−1Þ, by the ETH [Eq. (1)] and related argu-
ments [28,67–69]. Therefore, the time average hOit equals
the thermal average plus OðN−1Þ corrections.
Setup suited to noncommuting charges.—Consider a

quantum system formed from N ≫ 1 degrees of freedom.
The HamiltonianH is nonintegrable. It conserves a number
≪ N of charges Qa that do not all commute: ½H;Qa� ¼ 0,
but ½Qa;Qa0 � ≠ 0 for some a0 ≠ a. The charges generate a
non-Abelian symmetry group.
We illustrate with an N-qubit system that has an SU(2)

symmetry—whose total spin components Sa¼x;y;z are con-
served. (Those components decompose as Sa ¼

P
N
j¼1 sj;a,

if the sj;a denote qubit j’s spin operators.) H, S⃗2, and Sz
share an eigenbasis fjα; mig. If ℏ ¼ 1,

Hjα; mi ¼ Eαjα; mi; ð3Þ

S⃗2jα; mi ¼ sαðsα þ 1Þjα; mi; and ð4Þ

Szjα; mi ¼ mjα; mi; wherein ð5Þ

m ¼ −sα;−sα þ 1;…; sα: ð6Þ

Ladder operators S� ¼ Sx � iSy raise and lower Sz.
The normalized initial state decomposes as

jψð0Þi ¼
X
α;m

Cα;mjα; mi; wherein Cα;m ∈ C: ð7Þ

Operators O have time t expectation values hOit ≔
hψðtÞjOjψðtÞi. We drop the subscript from time constants:

hHi≕E; and ð8Þ

hSzi≕M: ð9Þ

Aligning the z axis with hS⃗i, we set M ≥ 0 and
hSxi; hSyi ¼ 0, without sacrificing generality. The state
has an extensive energy, E ¼ OðNÞ, and is far from
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maximally spin polarized: N −M ¼ OðNÞ. [ETH-type
statements tend to hold when the thermodynamic entropy
is extensive [1]. Sth tends to be nonextensive when additive
charges (e.g., E and Sx;y;z) lie near their extremes, which we
therefore exclude].
jψð0Þi belongs to an approximate microcanonical sub-

space, which generalizes a microcanonical subspace for
noncommuting charges [32,45,60]: Measuring any charge
Qa likely yields an outcome near hQai; the charges’
variances are bounded as

varðHÞ ≤ OðNÞ; ð10Þ

varðSzÞ ≤ OðNÞ; and ð11Þ

varðSx;yÞ ≤ OðNÞ: ð12Þ

Conditions (10)–(12) govern typical many-body states
prepared today, including all short-range-correlated
states [70] [45,60].
Having introduced the initial state, we profile operators

expected to obey the non-Abelian ETH. Without sacrificing
generality, we focus on symmetry-adapted operators:
Spherical tensor operators consist of components TðkÞ

q that
transform irreducibly under global SU(2) rotations [16].
For example, consider an atom absorbing a photon (of spin
k ¼ 1), which imparts q ¼ 1 quantum of z-type angular

momentum. Tðk¼1Þ
q¼1 represents the photon’s effect.

Generally, the index q ¼ −k;−kþ 1;…; k. Examples

include single-spin operators: sj;z is a Tð1Þ
0 , and the ladder

operators sj;� ¼ sj;x � isj;y are proportional to Tð1Þ
�1 oper-

ators. Every operator equals a linear combination of TðkÞ
q

operators [16].
We focus on few-body operators, commonly expected to

satisfy ETH-type postulates [1,71]. More precisely, we
consider K-local operators O, which have operator norms
≤ OðKÞ. Examples include products of K single-spin
operators, e.g., s1;xs2;y � � � sK;z þ H:c: Every K-local oper-
ator equals a linear combination of spherical-tensor com-

ponents Tð≤KÞ
q . We focus on K ¼ Oð1Þ and hence on

operators TðkÞ
q with k; q ¼ Oð1Þ.

Consider representing a TðkÞ
q operator as a matrix relative

to the energy eigenbasis. The matrix elements obey the
Wigner–Eckart theorem [16],

hα; mjTðkÞ
q jα0; m0i ¼ hsα; mjsα0 ; m0; k; qihαjjTðkÞjjα0i: ð13Þ

The first factor, hsα; mjsα0 ; m0; k; qi, is a Clebsch–Gordan
coefficient, which encodes the rules of quantum angular-
momentum addition: The coefficient is nonzero only if
m ¼ m0 þ q and sα ¼ jsα0 − kj; jsα0 − kj þ 1;…; sα0 þ k
(only if, in the photon example, the atomic transition obeys
selection rules). Whereas the Clebsch–Gordan coefficient is

kinematic, the second factor in Eq. (13) is dynamical. This
reduced matrix element hαjjTðkÞjjα0i depends on the oper-

ator TðkÞ
q and on H but not on the quantum numbers m, m0,

and q (e.g., not on how many quanta of z-type angular
momentum the photon gives the atom).
Non-Abelian ETH.—We now posit that the reduced

matrix element can obey the non-Abelian ETH. Define
the average energy E ≔ 1

2
ðEα þ Eα0 Þ and energy difference

ω ≔ Eα − Eα0 . Analogously, define the average spin
quantum number S ≔ 1

2
ðsα þ sα0 Þ and the difference

ν ≔ sα − sα0 . Denote by SthðE;SÞ the thermodynamic
entropy at energy E and spin quantum number S. The

operator TðkÞ
q and Hamiltonian H obey the non-Abelian

ETH if

hαjjTðkÞjjα0i¼T ðkÞðE;SÞδα;α0 þe−SthðE;SÞ=2fðkÞν ðE;S;ωÞRαα0 :

ð14Þ

The real functions T ðkÞ and fðkÞν depend smoothly on the
densities E=N and S=N. The Rαα0 are erratically varying
Oð1Þ numbers, as in the conventional ETH.
Unlike E, S is nonextensive, so the S dependencies in

Eq. (14) may be unexpected. Yet the Wigner–Eckart
theorem [Eq. (13)] prevents hαjjTðkÞjjα0i from depending
on m or m0. Hence only S can encode the non-Abelian-
charge conservation here.
Thermal prediction.—Nonintegrable systems thermalize

to the canonical state ρcan ∝ e−βH if just energy is conserved
and to the grand canonical state ρGC ∝ e−βðH−μN Þ if the
energy and particle number N are conserved, etc. Which
thermal state emerges depends on the charges [67,72].
If they fail to commute, derivations of the thermal state’s
form break down [30,32]. Certain derivations were gener-
alized in quantum-information thermodynamics to accom-
modate noncommuting charges [31–33,72,73], leading to
the non-Abelian thermal state (NATS),

ρNATS ≔ e−βðH−ΣaμaQaÞ=Z: ð15Þ

β and the effective chemical potentials μa are defined
by the charge expectation values, TrðHρNATSÞ ¼ E and
TrðQaρNATSÞ ¼ hQai [45,74]. The partition function is

Z ≔ Trðe−βðH−
P

a
μaQaÞÞ. The NATS shares its form with

the generalized Gibbs ensemble [75–79], often defined for
integrable Hamiltonians and usually used with commuting
charges (see Ref. [80] for an exception). Since our charges
fail to commute and our H is nonintegrable, we write
“NATS” for clarity. Signatures of ρNATS have emerged
dynamically in numerical simulations [45] and a trapped-
ion experiment [60], yet full thermalization to ρNATS has not
been observed in closed quantum systems. Furthermore,
noncommuting charges were conjectured to alter thermal-
ization [45].
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Our z-axis choice simplifies ρNATS to e−βðH−μSzÞ=Z
(Supplemental Material, Sec. 1) [81]. Although ρNATS
now shares its mathematical form with ρGC, the
physics differs significantly. Here, energy and three non-
commuting charges are conserved globally and transported
locally; during grand canonical thermalization, energy
and particles—two commuting charges—are. In the grand
canonical case, the global system begins in a micro-
canonical subspace. Here, no nontrivial microcanonical
subspace (associated with sα ≠ 0) exists, and the global
system begins in an approximate microcanonical subspace.
These differences in setup, we show, permit differences in
thermalization.

TðkÞ
q has a thermal expectation value hTðkÞ

q ith ≔
TrðTðkÞ

q ρNATSÞ, whose trace we calculate using the jα; mi
basis. We apply the Wigner–Eckart theorem [Eq. (13)], and
then the non-Abelian ETH [Eq. (14)]. The Clebsch–Gordan
coefficient vanishes if q ≠ 0, so

hTðkÞ
q ith ¼

δq;0
Z

X
α;m

e−βðEα−μmÞhsα; mjsα; m; k; 0iT ðkÞðEα; sαÞ:

ð16Þ

(We omit corrections exponentially small in N.)
Time-averaged expectation value.—After jψð0Þi [Eq. (7)]

evolves for a time t, the operator TðkÞ
q has an expectation

value

hTðkÞ
q it ¼

X
α;α0;m;m0

C�
α;mCα0;m0eiðEα−Eα0 Þthα; mjTðkÞ

q jα0; m0i:

ð17Þ

We apply theWigner–Eckart theorem [Eq. (13)], invoke the

non-Abelian ETH [Eq. (14)], and average hTðkÞ
q it0 over an

infinite time (limt→∞ð1=tÞ
R
t
0 dt

0). For all α0 ≠ α, the expo-
nential in Eq. (17) dephases, so the “off-diagonal” terms
vanish:

hTðkÞ
q it¼

X
α;m

C�
α;mþqCα;mhsα;mþqjsα;m;k;qiT ðkÞðEα;sαÞ:

ð18Þ

Comparison.—We prove two results: (i) If M ¼ OðNÞ,
the time average [Eq. (18)] equals the thermal average
[Eq. (16)], plus OðN−1Þ corrections, as in the absence of
noncommuting charges [27,28]. (ii) If M ¼ 0, the time
average may deviate from the thermal average by anoma-
lously large, OðN−1=2Þ corrections. These corrections
appear sourced by different physics: quantum uncertainty
in noncommuting charges, rather than thermodynamic
ensembles’ distinguishability at finite N [27,28]. Result
(ii) holds under a physically reasonable assumption

described and motivated below Eq. (21). Anomalous
thermalization may occur also at intermediate scalings
M ¼ OðNγÞ, for exponents 0 < γ < 1, but this regime lies
outside this Letter’s scope.
Consider an extensiveM ¼ OðNÞ and sj;z-like operators

TðkÞ
q¼0. We sketch the argument for thermalization here;

details appear in the Supplemental Material, Sec. 2 [81].
The thermal average [Eq. (16)] and time average [Eq. (18)]
share a crucial property: In each, T ðkÞðEα; sαÞ is averaged
over a sharply peaked probability distribution. The
peaking follows primarily from the variance conditions
[Eqs. (10)–(12)]. Near each peak, the smooth function
T ðkÞðEα; sαÞ can be Taylor expanded, and then averaged
term by term. The leading term evaluates to T ðkÞðE;MÞ in
both averages, Eqs. (16) and (18). All higher-order terms
evaluate to ≤ OðN−1Þ. Therefore, the averages equal each
other to within the usual correction:

hTðkÞ
0 it − hTðkÞ

0 ith ¼ OðN−1Þ: ð19Þ

Now, consider ladder-operator-like operators TðkÞ
q≠0. The

thermal average [Eq. (16)] vanishes, due to the Kronecker
delta. The time average [Eq. (18)] is≤ OðN−1Þ, as shown in
the Supplemental Material, Secs. 3 and 4 [81]. Hence the
time average equals the vanishing thermal average to within
the ordinary OðN−1Þ correction.
The correction can be anomalously large when M ¼ 0.

When M ¼ 0, the thermal state is rotationally invariant.

Only similarly invariant Tð0Þ
0 operators can have nonzero

thermal averages [84]. Contrariwise, some states jψð0Þi
have M ¼ 0 but are rotationally noninvariant. Intuitively,
these states have vanishing magnetic dipole moments but
nonzero magnetic quadrupole moments (or higher-order

moments). Such states can endow operators Tðk>0Þ
q with

time averages of OðN−1=2Þ, in contrast with their vanishing
thermal averages. Here is an example.
Consider an arbitrary Hamiltonian eigenspace labeled by

α ¼ A, associated with an extensive energy EA ¼ OðNÞ
and a spin quantum number sA ¼ OðN1=2Þ (chosen for
reasons shown below). The following state has M ¼ 0 but
is rotationally noninvariant:

jψð0Þi ≔
ffiffiffi
1

3

r
jA;m ¼ sAi þ

ffiffiffi
2

3

r ����A;m ¼ −
sA
2

�
: ð20Þ

jψð0Þi has the properties stipulated in the setup; one can
check directly. Consider the local magnetic quadrupole
moment 3si;zsj;z − s⃗i · s⃗j. The i and j label neighboring

sites. This Tð2Þ
0 operator’s time average [Eq. (18)] reduces to
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hTð2Þ
0 it ¼ Oð1Þ × T ð2ÞðEA; sAÞ: ð21Þ

Clebsch–Gordan coefficients determine the Oð1Þ factor.
The T ð2ÞðEA; sAÞ scales linearly with the spin density—

as sA=N—for some systems, we assume. Bound states
motivate this assumption, as outlined here and detailed in
the Supplemental Material, Sec. 5 [81]. T ð2ÞðEA; sAÞ
approximately equals an eigenstate expectation value, by
the Wigner–Eckart theorem and the non-Abelian ETH:

T ð2ÞðEA; sAÞ ≈ hA; sAj3si;zsj;z − s⃗i · s⃗jjA; sAi: ð22Þ

The right-hand side is essentially the joint probabilityPði; jÞ
of finding spin quanta at sites i and j. Semiclassically,
Pði; jÞ ¼ PðijjÞ × PðjÞ, if PðjÞ denotes the probability of
finding a quantum at j and PðijjÞ denotes the conditional
probability of then finding a quantumat i.PðijjÞ can beOð1Þ
if the spin quanta form bound clusters: Just as attractive
interactions can bind particles together, so may suitable
(e.g., ferromagnetic) couplings bind spin quanta. In the high-
energy eigenstate jA; sAi, clusters will be spread uniformly,
with a density ∼sA=N ∼ PðjÞ. Combining these steps
yields T ð2ÞðEA; sAÞ∼ PðijjÞ× PðjÞ ¼ Oð1Þ×OðsA=NÞ ¼
OðN−1=2Þ, by our choice sA ¼ OðN1=2Þ. Substituting into
Eq. (21) yields the time average. It deviates from the
vanishing thermal average by

hTð2Þ
0 it − hTð2Þ

0 ith ¼ OðN−1=2Þ > OðN−1Þ: ð23Þ
See the Supplemental Material, Sec. 6 [81], for details and
Sec. 7 for another anomalous-thermalization example.
Anomalous OðN−1=2Þ scaling also characterizes a kin-

ematic bound in Ref. [32]. That work generalized a conven-
tional derivation of the thermal state’s form to accommodate
noncommuting charges: The global system, formed from N
identical subsystems, was assumed to be in a generalized
microcanonical state. The average subsystem’s reduced state
was found to lie a distance ≤ ðconstÞN−1=2 þ ðconstÞ
from ρNATS. It is possible that our results, based on dynamics
and the ETH, reflect the Hamiltonian-independent results
in Ref. [32].
Outlook.—We have extended the eigenstate thermaliza-

tion hypothesis, a cornerstone of many-body physics, to the
more fully quantum scenario in which conserved charges
fail to commute with each other. Noncommutation can
prevent the charges from sharing an eigenspace (a sector)
and invalidates the usual assumption of the Hamiltonian’s
nondegeneracy. We overcame these challenges by propos-
ing a non-Abelian ETH and focusing on an approximate
microcanonical subspace.Applying these tools to SU(2), we
compared the long-time average of an operator’s expectation
valuewith the thermal expectationvalue. The averages agree
in many cases, e.g., wheneverM ¼ OðNÞ. Yet the averages
can disagree by anomalously large OðN−1=2Þ corrections
under a physically reasonable assumption.

This work establishes several research opportunities. First,
our analytical results call for testing with numerics and
quantum simulators. Trapped ions have been shown, and
ultracold atoms and superconducting qudits have been
argued, to be able to test noncommuting-charge thermody-
namics [45,59,60]. Promising models include nonintegrable
Heisenberg Hamiltonians [45,59,60] and many-electron
atoms. One would verify the non-Abelian ETH [Eq. (14)];
identify operators TðkÞ

q whose smooth functions T ðkÞ satisfy
our assumptions, enabling anomalous thermalization; and
observe deviations [Eq. (23)] from thermal predictions.
Second, those deviations may signal the retention, by

local subsystems, of information about their initial con-
ditions. Such retention might be leveraged. Noncommuting
charges could enhance quantum memories, as many-body
localization has been proposed to Ref. [85]. Localization
resembles prethermalization [86], scars [87], and Hilbert-
space fragmentation [88] in disrupting closed quantum
many-body systems’ thermalization. Noncommuting
charges may belong on the list, as indicated by our results.
Confirmation would hold fundamental interest, as dis-
rupting thermalization effectively hinders time’s arrow.
Third, our arguments merit generalization from SU(2).

Fourth, the smooth function fðkÞν ðE;S;ωÞ [Eq. (14)] should
reveal how non-Abelian symmetries influence thermal-
ization dynamics and so merits investigation. This work
extends the ETH to the more fully quantum regime of
noncommuting charges, linking many-body physics to
quantum-information thermodynamics [29–63].
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