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Critical phase and spin sharpening in SU(2)-symmetric monitored quantum circuits

Shayan Majidy ,1,2,* Utkarsh Agrawal,3,† Sarang Gopalakrishnan,4 Andrew C. Potter,5

Romain Vasseur,6 and Nicole Yunger Halpern 7,8,‡

1Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada N2L 2Y5
2Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

3Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
4Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA

5Department of Physics and Astronomy, and Quantum Matter Institute, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
6Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA

7Joint Center for Quantum Information and Computer Science, NIST and University of Maryland, College Park, Maryland 20742, USA
8Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA

(Received 30 May 2023; revised 3 August 2023; accepted 4 August 2023; published 17 August 2023)

Monitored quantum circuits exhibit entanglement transitions at certain measurement rates. Such a transition
separates phases characterized by how much information an observer can learn from the measurement outcomes.
We study SU(2)-symmetric monitored quantum circuits, using exact numerics and a mapping onto an effective
statistical-mechanics model. Due to the symmetry’s non-Abelian nature, measuring qubit pairs allows for
nontrivial entanglement scaling even in the measurement-only limit. We find a transition between a volume-law
entangled phase and a critical phase whose diffusive purification dynamics emerge from the non-Abelian
symmetry. Additionally, we identify a “spin-sharpening transition.” Across the transition, the rate at which
measurements reveal information about the total spin quantum number changes parametrically with system size.
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I. INTRODUCTION

Traditionally, quantum many-body physicists have been
limited to studying closed systems in equilibrium. Thanks
to the maturation of quantum simulators [1], researchers can
now prepare and control open quantum systems far from
equilibrium with high precision. Quantum simulators have
helped answer foundational questions about quantum entan-
glement and thermodynamics [2,3]. Also, quantum simulators
have the potential to solve real-world problems in, e.g., ma-
terials science and chemistry [3,4]. These advances have
raised questions about open quantum systems and, in turn,
the role of measurements in quantum dynamics [5]. Some of
these questions have been answered using monitored quan-
tum circuits [6,7], which combine many-body dynamics and
measurements. A typical monitored quantum circuit acts on
a chain of L qubits (spin- 1

2 particles). The circuit contains
two-qubit unitary gates, after each layer of which every
qubit has a probability p of being measured. Monitored cir-
cuits exhibit measurement-induced phase transitions (MIPTs),
due to the competition between chaotic dynamics and
measurements [8–31].

Initially, an MIPT was cast as a transition between phases
characterized by volume-law and area-law entanglement scal-
ing [32,33]. Equivalently, the transition is a purification
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transition between a mixed phase and a pure phase [8]. When
the measurement rate p is low, the chaotic dynamics scramble
information about the initial state. Local measurements can-
not extract that information in this mixed phase. An initially
mixed state becomes pure, conditionally on measurement out-
comes, in a time tP ∼ exp(L), with L the number of qubits. In
contrast, at large p, the measurements can distinguish different
initial states efficiently. In this pure phase, an initially mixed
state purifies quickly, often at an L-independent rate [32].

Few properties restrict the simplest monitored circuits’
dynamics: unitarity and locality. Monitored circuits can be
enriched, though. Enhancements include charge conserva-
tion [19–24], measurements of particular operators (such
as generators of the toric-code stabilizer) [25,26], and the
replacement of qubits with free fermions [27–30,34,35]. U(1)-
symmetric monitored circuits exhibit a charge-sharpening
transition [21] between a charge-fuzzy phase and a charge-
sharp phase. These phases are distinguished by how quickly
measurements collapse superpositions of different amounts
of charge: how efficiently an observer can learn from local
measurements the amount of global charge in the system.

Noncommuting symmetry charges have spawned a grow-
ing subfield of quantum thermodynamics [36–39]. Noncom-
mutation of charges has been shown to increase average
entanglement [40], decrease entropy-production rates [41,42],
and necessitate modifications to the eigenstate thermalization
hypothesis (ETH) [43,44]. Researchers have used trapped
ions to bridge this subfield from theory to experimental re-
ality [45–47]. This subfield’s discoveries partially motivate
our work, as do two computational results: first, a model of
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quantum computation can be defined from SU(2)-symmetric
gates and spin fusions [48]. Second, SU(2)-symmetric mea-
surements can achieve universal quantum computation, if
performed on certain initial states [49,50]. We therefore
study monitored quantum circuits with three noncommuting
charges.

In this work, we explore monitored-random-circuit dy-
namics of one-dimensional (1D) qubit chains with SU(2)
symmetry. Equivalently, the circuits conserve three non-
commuting charges: the total spin angular momentum’s
components. First, we explore the purification dynamics of a
spin chain initially entangled with an ancilla spin. We identify
a purification transition between a mixed phase, in which the
ancilla purifies over an exponential-in-L time, and a criti-
cal phase1 with scale-invariant purification and entanglement
growth. Above a critical measurement rate (at p > pc), we
observe an extended-in-p critical phase in which the purifica-
tion time scales diffusively: tP ∼ L2. Second, we examine the
entanglement dynamics undergone by an initially unentangled
state. The purification transition doubles as an entanglement
transition between volume-law entanglement scaling, at p <

pc, and subextensive (logarithmic or small-power-law) scal-
ing, at p > pc. The critical entanglement dynamics p > pc,
even in the measurement-only limit (p = 1), due to the local
measurements’ noncommuting nature. In fact, a Lieb-Shultz-
Mattis–type anomaly precludes a simple area-law entangled
regime [35], as would arise when p = 1, absent symmetries.

Observing the purification and entanglement transition ex-
perimentally would require many instances of the same set of
measurement outcomes. Such instances occur with vanishing
likelihood in the thermodynamic limit. This challenge is the
postselection problem. To evade this difficulty, we explore a
“spin-sharpening, or learnability” transition. Denote by s the
total spin quantum number. We examine whether the dynam-
ics collapse an initial superposition of states in different s
sectors. Unlike in the U(1)-symmetric problem, the sectors
generally cannot be shared by the (extensive) charges: our sys-
tem’s three charges, failing to commute, share only one sector.
We identify a spin-sharpening transition at a measurement
rate p = p#, which is numerically indistinguishable from the
entanglement-transition rate: p# ≈ pc. In the “spin-sharp”
phase (p > p#), an observer can, in principle, determine the
system’s s in a timescale t ∼ L2, with a probability tending
to unity as L → ∞. In contrast, in the “spin-fuzzy” phase
(p < p#), the timescale is t ∼ L3. This “learning” perspective
might be used to probe the transition experimentally.

Finally, we interpret our results within an effective replica
statistical-mechanics model. We obtain the model by averag-
ing over the gates and measurement outcomes, building on
previous results about asymmetric and symmetric circuits [7].
This model casts dynamical properties of SU(2)-symmetric
monitored quantum circuits in terms of some effective Hamil-
tonian’s low-energy properties. We interpret our numerical
results in terms of this effective-Hamiltonian model.

The rest of this paper is organized as follows. In Sec. II, we
introduce SU(2)-symmetric monitored quantum circuits. We

1For the purposes of this discussion, we classify Goldstone phases
with long-range order as critical.

FIG. 1. SU(2)-symmetric monitored quantum circuits. L qubits
(circles) are prepared in the state ρi. Each “brick” in the brickwork
circuit is an SU(2)-symmetric unitary gate with a probability 1 − p
and is a two-qubit projective measurement with a probability p. The
circuit acts for some time (some number of layers) before the final
state, ρf , is read out. One brick illustrates which bonds have even
(odd) indices.

present the purification (entanglement) transition in Sec. III
and the spin-sharpening transition in Sec. IV. Section V con-
tains our statistical-mechanics mapping. Section VI finishes
with opportunities established by this work.

II. MODEL: SU(2)-SYMMETRIC MONITORED CIRCUITS

Consider a brickwork circuit acting on a 1D chain of
qubits, as depicted in Fig. 1. The number L of spins is even for
convenience. Denote by σ

(x,y,z)
j the Pauli matrices acting on

qubit j. The total spin components S(x,y,z) = 1
2

∑L
j=1 σ

(x,y,z)
j

generate the algebra associated with a global SU(2) symmetry.
We set h̄ to 1. The spin-squared operator �S2 has eigenvalues
s(s + 1) labeled by the total spin quantum number s. We
denote the eigenvalues of S(z) by m, the two-qubit singlet state
by |s0〉, and the two-qubit eigenvalue-m triplets by |tm〉.

Each brick is, with a probability 1 − p, a gate, or, with a
probability p, a projective measurement. The gates are chosen
randomly from SU(2). The most general such gate acting on
spins j and j + 1 has the form

cos(φ)I − i sin(φ) Sw j, j+1, (1)

up to an irrelevant overall phase. Sw j,k swaps the states of the
spins j and k. We draw each gate’s parameter φ independently
from the uniform distribution on [0, 2π ). Each measurement
projects a two-qubit state onto the singlet (s = 0) or triplet
(s = 1) subspace (fusion channel). Crucially, two measure-
ments fail to commute when acting on overlapping spin pairs.
Thus, the SU(2) symmetry precludes nontrivial single-qubit
measurements. One time step consists of a brick layer on
even-index bonds and a layer on odd-index bonds. In the
even-index-bond layers, a brick connects the first and Lth
qubits, effecting periodic boundary conditions.

III. PURIFICATION (ENTANGLEMENT) TRANSITION

We first explore the model’s entanglement and purification
dynamics. In Sec. III A, we examine the purification dynam-
ics of initially mixed states. The spin chain’s state begins
scrambled and entangled with an ancilla qubit A. The ancilla’s
entanglement decreases over time. In Sec. III B, we examine
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FIG. 2. The purification time reveals a z = 2 phase. The entropy SA quantifies the ancilla qubit’s entanglement with the system. We plot
log(SA) for clarity, as SA decays exponentially. t/L2 runs along the x axis to demonstrate the existence of a phase in which the system purifies
over a timescale tP ∼ L2. The curves’ collapsing at p > 0.35 evidences this phase. We used 30 000 samples when L = 8 to 16; 10 000 samples
when L = 18; and 1500 samples when L = 20. The y axis’s lower limit is log(10−3) ≈ −6.91. Additional numerics for p = 0.6, 0.8, and 1.0
are included in Appendix A.

the entanglement dynamics exhibited by initially short-range-
entangled pure states.

A. Purification time

We determine the purification time as follows [9]. Denote
by |s, m, λ0〉 and |s, m, λ1〉 two orthogonal states from the
same (s, m) sector. The last index distinguishes degenerate
states. We entangle an ancilla qubit with the system’s L qubits,
forming the (L + 1)-qubit state

˜|ψi〉 = 1√
2

(|0〉A|s, m, λ0〉 + |1〉A|s, m, λ1〉). (2)

The subscript A distinguishes the ancilla from the system
qubits. A does not undergo gates or measurements.

We choose two system states that have s = 1 and m =
0. In |s = 1, m = 0, λ0〉, qubits 1 and 2 are in the triplet
|t0〉; and the remaining pairs of qubits, in singlets |s0〉. In
|s = 1, m = 0, λ1〉, qubits 3 and 4 are in |t0〉, instead. These
two system states are orthogonal, in the same �S2 sector, and in
the same S(z) sector. However, one can distinguish the states
by measuring qubits 1 and 2. Such local distinguishability is
undesirable. Therefore, after preparing ˜|ψi〉, we scramble the
system: the system undergoes a unitary-only (p = 0) SU(2)-
symmetric circuit for L2 time steps. (The tP identified later
in this subsection motivates the L2.) The scrambling encodes
quantum information about the ancilla roughly uniformly in
many-body entanglement. This process prepares |ψi〉.

|ψi〉 undergoes t = L2 time steps under monitored-
random-circuit dynamics with p � 0. Denote by ρA :=
TrĀ(|ψf〉〈ψf |) the final state of A. We calculate the final en-
tanglement entropy between A and the system:

SA := S(ρA) := −Tr[ρA log(ρA)]. (3)

(All logarithms are base e.) We anticipate that the measure-
ments will purify the system at an exponential-in-t rate: SA ∼
e−t/tP (L). Therefore, we plot log(SA) in Fig. 2. Along the x
axes runs t/L2. At each p > pc ≈ 0.35, the different-L curves
collapse. Hence, this phase purifies according to SA ∼ e−t/L2

and so has a dynamical critical exponent z = 2. This z value
characterizes diffusive scaling [51] and suggestively evokes
ferromagnetic spin waves’ dynamics [52, Chap. 33].

At lower measurement rates, p 
 pc, we observe a mixed
phase. Figure 3 shows the purification time plotted against L,
at several p values. At p = 0.05, tP ∼ eL. At p values between
0.05 and 0.35, the scaling is unclear from the numerics; we

cannot conclude to which phase this intermediate regime be-
longs. Still, the exponential purification time resembles that
of asymmetric circuits [8]. We analyze this mixed phase ana-
lytically in Sec. V, using a duality between monitored circuits
and a statistical-mechanics model.

B. Entanglement dynamics

To characterize the critical phase further, we explore an ini-
tially pure state’s late-time bipartite entanglement entropy, Sf .
The purification transition manifests as a qualitative change in
the L dependence of Sf at p = pc.

We initialize the system in a short-range-entangled state
|ψi〉, a tensor product of a triplet |t0〉 and L−2

2 singlets |s0〉.
This choice’s details are unimportant. However, we choose
this state so that |ψi〉 is in the same s sector at all system
sizes L. The state undergoes monitored-circuit dynamics for
L2 time steps. This time suffices for the entanglement entropy
to reach a steady value, regardless of the measurement rate p.
Figure 8 in Appendix A illustrates this point at the extreme
values p = 0, 1. We measure the bipartite entanglement en-
tropy Sf between two equal-size halves of the chain.

Figure 4 shows the dependence of Sf on L at different
measurement rates p. At p = 0, we observe the volume-law
phase common to monitored circuits: Sf ∼ L. Figure 9 in
Appendix A supports this claim more precisely than does

FIG. 3. Qualitative comparison of the purification time’s growth
with L at different p values. For p < pc, the purification time diverges
rapidly with system size in a manner consistent with exponential.
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FIG. 4. The entanglement dynamics evidence no area-law phase.
The bipartite entanglement entropy reaches the long-time value Sf .
At p = 0, Sf is linear in L. As p increases, Sf gradually becomes
logarithmic or power law with a small exponent. When L = 10 to
16, we use 30 000 samples; when L = 18 and 20, we use 10 000.

Fig. 4. At larger p values,2 the entanglement scaling is less
consistent with a linear fit. Better fits are logarithmic and small
power law (Sf ∼ √

L). One cannot definitively distinguish
these behaviors at the accessible system sizes, as detailed in
Appendix A. The statistical-mechanics model (Sec. V) pro-
vides stronger evidence for the absence of a volume-law phase
at large p.

Intuitively, the slow entanglement growth at large p, even
in the measurement-only (p = 1) limit, arises from the non-
commutativity of the charges measured. Similar logarithmic
entanglement growth has been observed under measurement-
only dynamics previously: Majorana fermions were subjected
to noncommuting measurements in [25].

Appendix B presents numerical results concerning the cor-
relations between local observables at different sites. The
limitation on system size makes it difficult to determine the
functional form of the correlations’ decay with distance. How-
ever, we find a qualitative change in how the correlations
decay at p > pc and at p < pc.

IV. SPIN-SHARPENING TRANSITION

Having explored the purification dynamics within an s
sector, we explore the purification of a superposition spread
across s sectors. We again entangle the chain with an ancilla
qubit. This time, the ancilla is in |0〉, and the chain has a
spin quantum number s0, in superposition with the ancilla’s
being in |1〉 and the chain’s having s1. The dynamics may
purify the ancilla in a given measurement trajectory. In this
case, the chain’s state has collapsed onto the s0 (or s1) sec-
tor. Consequently, the measurement outcomes’ probability of
being compatible with the system’s having s1 (or s0) van-

2According to [8], the entanglement phase transition is equivalent
to the purification transition. Our system’s purification transition
happens at pc ≈ 0.35, according to the previous subsection. This
section’s numerics are consistent with an entanglement transition at
p ≈ 0.35, but the transition’s exact location is unclear.

FIG. 5. Evidence of spin-sharpening transition. The entropy SA

quantifies the ancilla qubit’s entanglement with the system. Differ-
ent curves correspond to different system sizes L. (a) The curves’
crossing at p ≈ 0.28 indicates a phase transition. (b) We identify a
finite-size collapse using ν = 3.0 and p# = 0.28.

ishes. An observer with knowledge of the circuit can learn the
spin quantum number by monitoring measurement outcomes
(though doing so may require the ability to classically simu-
late the circuit with postselected measurement outcomes).

Comparing spin sharpening with U(1)-charge sharpening is
illuminating. One can estimate as follows the total charge of
qubits undergoing a U(1)-symmetric hybrid circuit: Running
the circuit, one obtains ptL measurement outcomes (0s and
1s), on average. Consider averaging the outcomes, multiply-
ing by L, and rounding to the nearest integer. If t ∼ L, this
procedure estimates the charge accurately [53]. If the dynam-
ics are SU(2)-symmetric on average (as in Sec. II), sequential
measurements fail to commute. Hence, later measurements
render partially irrelevant the information obtained from ear-
lier measurements. An observer cannot obviously learn s
ever. Nevertheless, we numerically identify a measurement-
induced transition at a measurement rate p#. We call this
transition a spin-sharpening transition. It separates regimes in
which an observer can (p > p#) and cannot (p < p#) identify
s from the measurement outcomes, with a probability tending
to unity as the L → ∞.

We diagnose the spin-sharpening transition using a similar
procedure to the one in Sec. III A. The difference is that, un-
like in Eq. (2), we construct ˜|ψi〉 from distinct �S2 eigenspaces:

˜|ψi〉 = 1√
2

(|0〉A|s0, m, λ0〉 + |1〉A|s1, m, λ1〉). (4)

We choose m = 0, s0 = 1, and s1 = 0 for convenience: one
can construct such a ˜|ψi〉 by tensoring together singlets and
an m = 0 triplet, regardless of L. After preparing ˜|ψi〉, we
scramble the system under a p = 0 circuit for L2 time steps,
as in Sec. III A. This procedure prepares a state |ψi〉. Then,
we evolve the system under monitored-circuit dynamics with
a fixed p. Anticipating z = 2 dynamical scaling in the spin-
sharp phase, we evolve the system for L2 time steps. If the
ancilla purifies after this short time, we say that the spin has
sharpened. We denote the final state by |ψf〉.

Figure 5(a) shows the ancilla’s final entanglement entropy
SA plotted against p. Different curves correspond to different
system sizes L. The curves cross at p# ≈ 0.28, suggesting
that a spin-sharpening transition occurs at p#. Furthermore,
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FIG. 6. The spin-sharpening timescale is ∼L3 in the fuzzy phase
and ∼L2 in the sharp phase. The entropy SA quantifies the ancilla
qubit’s entanglement with the system. Different curves correspond to
different system sizes L. (a) t/L3 runs along the x axis to demonstrate
that the spin can sharpen over a timescale ∼L3. This timescale
characterizes the spin-fuzzy phase (p < p#). Simulating an L = 18
circuit over L3 time steps is not computationally feasible. Thus, no
L = 18 curve is present. (b) t/L2 runs along the x axis to demonstrate
that the spin can sharpen over a timescale ∼L2. This timescale
characterizes the spin-sharp phase (p > p#). We used 30 000 samples
when L = 8 to 16; and 10 000 samples when L = 18.

Fig. 5(b) displays a finite-size collapse. We used the scaling
form log(SA) = (p − p# )L1/ν , the correlation-length exponent
ν = 3.0, and p# = 0.28. Using ν = 3.0, we observe a suitable
collapse. ν values within ±1.2 of 3.0 yield reasonable col-
lapses, too.

Figure 6 reveals the phases’ spin-sharpening time scales:
∼L2 in the spin-sharp phase and ∼L3 in the spin-fuzzy phase.
A simple argument supports the latter [54]: |ψi〉 corresponds
to an eigenvalue s(s + 1) ∈ {1, 2} of �S2 = ∑

j,k �σ j · �σk . The
system contains ∼L2 pairs ( j, k). One might expect all pairs
to contribute roughly equally to 〈�S2〉, by ergodicity, in the
spin-fuzzy phase. Hence, 〈�σ j · �σk〉 ∼ s(s + 1)/L2. To identify
s(s + 1), we therefore must measure L2 correlators 〈�σ j · �σk〉.
Measuring one correlator with an imprecision ∼1/L requires
∼L2 measurements. We hence need ∼L4 measurements total.
Since (const)L measurements occur per time step, the spin
should sharpen in a time ∼L3.

Our identification of a spin-sharpening transition at p#

is subject to at least two caveats. First, the crossing point
drifts to larger p as L increases (perhaps coalescing with the
purification transition at pc as L → ∞). Second, the scaling
ansatz we chose for the data collapse in Fig. 5(b) may not
be valid. The ansatz implies that the timescale for a size-L
system to sharpen increases more quickly than L2 for p < p#

and more slowly than L2 for p > p#. However, our data for
p > p# (see Fig. 10 in Appendix A) are compatible with a
sharpening timescale ∼L2 deep in the critical phase. If the
sharpening time indeed scales as L2 throughout the critical
phase, the crossing in Fig. 5(a) must be a finite-size artifact.
Precisely identifying p# and the sharpening transition’s nature
is outside the scope of this work, due to the paucity of L values
accessible in exact computations. We defer a detailed analysis
of the spin-sharpening timescales to future work.

Finally, the spin-sharpening transition suggests a
postselection-free means of observing a measurement-
induced transition experimentally [53,55–57]: identify

whether an observer can learn s from measurement outcomes
in a given time interval. This learning would require
“decoders” for estimating s from the outcomes. The decoders’
accuracy, as a function of the measurement rate, would need
to be tested. In principle, one can learn s most accurately
via brute-force decoding [53]. One would, upon running the
circuit and obtaining the measurement outcomes, simulate the
circuit, postselected on the observed outcomes and operating
on a state in the s0 sector. Next, the simulation would be
repeated with an initial state in the s1 sector. From each
simulation, the probability that s0 (or s1) had engendered the
observed outcomes could be inferred.

However, this approach generically costs exponential-in-L
time (even if a quantum computer performs the simulation,
due to the postselection). Special classes of monitored dynam-
ics [53,55–57] may allow for approximate decoders that can
be implemented efficiently on classical or quantum computers
without postselection. In this case, the transition’s nature will
depend on both the circuit and the decoder and may differ,
in location or universality class, from the spin-sharpening
transition observed under optimal decoding. We leave for
future work the problem of designing efficient decoders for
spin-sharpening transitions.

V. EFFECTIVE-HAMILTONIAN DESCRIPTION
OF THE MONITORED DYNAMICS

To complement the numerics, we derive an effective
statistical-mechanics model: a description of the monitored
evolution as imaginary-time evolution under an effective
Hamiltonian acting on copies (replicas) of the system. In the
rest of this section, we describe the model. We elucidate its
ground and low-lying excited states in Sec. V A. Leveraging
these results, we elucidate the monitored circuit’s purification
transition in Sec. V B. Section V C explains the circuit’s lack
of an area law.

In the statistical-mechanics model, measurement outcomes
act as quenched disorder for a quantum trajectory. A replica
trick is needed to average nonlinear quantities, such as en-
tanglement, over trajectories [10,11]. One must average Q
replicas of the density matrix ρ⊗Q. In the replica limit, Q → 1.
More precisely, we want to calculate

ρ (Q)(t ) =
∑

�m

∫
dU (K �m,U ρ0K†

�m,U )⊗Q, (5)

dependent on the evolution operator K �m,U ≡ ∏2t
	=1 P	, �mU	. U	

denotes the unitary implemented by circuit layer 	. P	, �m de-
notes the projector onto the subspace associated with the list �m
of outcomes yielded by the measurements at time step i.

∫
dU

denotes an average over the SU(2)-symmetric gates (with the
appropriate probability measure).

An alteration to the circuit model will facilitate the analyt-
ics: we deform the discrete-time, strong-measurement circuit
dynamics into a continuous-time version. We replace the
gates with Hamiltonian evolutions over infinitesimal time
steps, and infinitesimally weak measurements replace the
projective measurements. We expect the continuous-time de-
formation to preserve the purification (entanglement) and
charge-sharpening transitions’ universal scaling properties.
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The reasons are analogous examples [53] and the system’s
lack of time-translation symmetry.

Here, we summarize the resulting Hamiltonian descrip-
tion. Appendix C contains a detailed derivation. The effective
Hamiltonian equals a sum of contributions from the unitary
dynamics and the weak measurements: H eff = Hu + Hm. The
terms are

Hu = −J
∑

i

⎡
⎣ Q∑

a=1

(�Sa
i · �Sa

i+1 − �Sa∗
i · �Sa∗

i+1

)
⎤
⎦

2

, (6)

Hm = γ
∑

i

2Q∑
a,b=1

(�Sa
i · �Sa

i+1

)
�a,b

(�Sb
i · �Sb

i+1

)
. (7)

The coupling constant J encapsulates the unitary dynamics’
scrambling power, and γ the weak measurements’ strength.
Pa

i, j is the projector onto the singlet sector of spins i and j
in replica copy a. Equations (6) and (7) have two kinds of
summations over the replica index a. When a runs from 1
to Q, the summation is over forward copies of the replicas.
a∗ represents the corresponding backward copy. When a runs
from 1 to 2Q, the summation is over both the backward and
forward copies. The projector �a,b = δab − 1

2Q is onto inter-
replica fluctuation modes. The associated term in Eq. (7) is
minimized when �Si · �Si+1 yields the same value, operating on
any replica, as operating on any other. If the measurements are
projective, all the replicas must yield the same measurement
outcome. If the measurements are weak, as above, this restric-
tion is softened; a finite-energy cost accompanies inter-replica
fluctuations in the measured operator �S · �S.

The effective Hamiltonian has a left/right SQ × SQ sym-
metry: H eff remains invariant under permutations of the Q
forward copies and permutations of the Q backward copies.
The monitored dynamics map to imaginary-time evolution
under H eff (in the replica limit Q → 1). Thus, we must under-
stand this Hamiltonian’s low-energy properties to understand
the monitored dynamics’ late-time properties.

A. Ground state and collective excitations
at low measurement rates

We begin with a measurement-free model: γ = 0 in
Eq. (7). A ground state is a configuration that, when acted on
by

∑Q
a=1(�Sa

i · �Sa
i+1 − �Sa∗

i · �Sa∗
i+1) for any nearest-neighbor pair

(i, i + 1), vanishes. Such a configuration is achievable if and
only if, for some pairing of (a, b∗), �Sa

i · �Sa
i+1 = �Sb∗

i · �Sb∗
i+1 for

all i. The ground states thus can be labeled by all such pair-
ings (a, b∗). Furthermore, the ground states are represented
by the elements σ of the permutation group SQ such that
�Sa

i · �Sa
i+1 = �Sσ (a)∗

i · �Sσ (a)∗
i+1 . To satisfy this condition for all i,

the interaction must be ferromagnetic, precluding frustration.
We show in Appendix C that the ground space of Hu is
that of an SU(4) ferromagnet. The ground states can thus be
labeled as | ⊗L

i=1 σ 〉〉. The permutation σ ∈ SQ, and the tensor
product emphasizes the pairings’ uniformity across space.3

3As noted, the ground space has a degeneracy labeled by the ground
states of the SU(4) ferromagnet. The label depends on the initial

Importantly, the ground space breaks the discrete symmetry
SQ × SQ to SQ.

We now briefly sketch the low-lying energy eigenstates.4

If γ = 0, the excitations over a symmetry-broken state | ⊗L
i=1

σ 〉〉 are described by Q decoupled SU(4) ferromagnetic chains,
each formed from two SU(2) chains. Let us focus on one
SU(4) chain. An SU(4) ferromagnet’s Goldstone modes live
on a six-dimensional manifold. They result in three gapless
modes with energies vanishing as L−z, wherein z = 2. These
gapless modes are of two types: two modes arise from fluctu-
ations within single SU(2) spin chains. The third mode arises
from collective fluctuations of the two SU(2) chains. In sum-
mary, Q replicas lead to 2Q diffusive (z = 2) modes associated
with fluctuations within single SU(2) chains, plus Q diffusive
modes associated with inter-replica fluctuations. As noted
above, measurements affect only the inter-replica fluctuations
and thus couple the Q inter-replica modes [Eq. (7)].

Consider increasing the measurement parameter γ from
0. As in U(1)-symmetric circuits [58], measurements gap
out some inter-replica degrees of freedom. Furthermore, the
inter-replica gapless modes reduce to one diffusive mode
(corresponding to the fluctuations in the replicas’ average)
and Q − 1 relativistic ballistic (z = 1) modes, which describe
inter-replica fluctuations. These ballistic modes cause the
Rényi entropies with indices n > 1 to grow ballistically in
the presence of measurements [21,58]. The diffusive inter-
replica modes are well defined only for symmetry-broken
states whose forward and backward copies are paired ex-
plicitly. Thus, these modes are expected to survive only
in the replica-symmetry-broken phase (volume-law phase).
However, the 2Q intrachain-fluctuation SU(2) modes do not
depend on such pairings. Hence, these modes are expected
to exist at all measurement strengths and so in the critical
phase. As we discuss below, these surviving gapless z = 2
modes likely underlie two circuit behaviors that we observed:
the L2 purification timescale and the absence of area-law
entanglement.

B. Purification

Using the formalism above, we can understand the purifi-
cation of an initially maximally mixed state | ⊗L

i=1 e〉〉. The
e ∈ SQ denotes a permutation that pairs replica a with a∗. At
a late time t , the density matrix’s trajectory-averaged purity
�(t ) is given by

�(t ) = lim
Q→1

〈〈 ⊗L
i=1 g

∣∣e−βH eff ∣∣ ⊗L
i=1 e

〉〉
〈〈 ⊗L

i=1 e
∣∣e−βH eff

∣∣ ⊗L
i=1 e

〉〉 . (8)

g denotes the transposition that swaps replica 1 with 2*
and 2 with 1* while acting as the identity on the other
replicas [10,11]. The purification time is when �(t ) be-
comes O(1). In the absence of measurements γ = 0 an
initially maximally mixed state will fail to purify and will

state. We drop the label from our notation for simplicity, as the label
does not impact the following discussion.

4The gaps between these eigenstates’ energies and the ground-state
energy vanishes in the thermodynamic limit but remains nonzero at
finite L.
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have �(t ) = 1
2L for all times. Indeed, at γ = 0, | ⊗L

i=1 e〉〉
is a ground state of H eff and has vanishing energy. Thus,
�(t )|γ=0 = limQ→1〈〈⊗L

i=1g| ⊗L
i=1 e〉〉 = 1/2L. Excitations of

the discrete-symmetry-broken phase are gapped domain-wall
configurations. Therefore, we expect this phase to be sta-
ble under the strengthening of the weak measurements to
low rates γ . For the system to transition between different
replica-symmetry-broken ground states, a domain wall must
tunnel across the entire system. Such transitions are thus
expected to occur over an exponential-in-system-size time,
which we identify as the purification time: tP ∼ eL. This ex-
ponential scaling is a well-established result in the absence
of symmetry [10,32,33,59], and the SU(2) symmetry has
little bearing on the replica-symmetry breaking; essentially
identical arguments apply in the symmetry’s absence. This
behavior contrasts with that of lattice magnets that have con-
tinuous symmetries. There, a symmetry-broken state can be
deformed smoothly into another symmetry-broken state over a
poly(L) timescale. Interestingly, monitored free fermions have
an emergent, continuous inter-replica symmetry (as opposed
to our discrete SQ symmetry), resulting in linear purification
times [60–63].

On the one hand, the domain walls correspond to the bro-
ken discrete permutation symmetry in the volume-law phase.
On the other hand, the gapless modes do not mix permuta-
tions. The discrete-symmetry-broken phase exists regardless
of whether there are also continuous symmetries.

The replica symmetry is restored at sufficiently high mea-
surement strengths; the argument for tP ∼ eL breaks down.
Instead, the purification time depends on the effective Hamil-
tonian’s energy gap. We conjecture that this gap scales as
1/L2, due to the gapless modes associated with the previous
subsection’s 2Q z = 2 modes. This gap scaling results in a
purification time tP ∼ L2.

C. Absence of area law under strong measurements

We can establish the absence of an area-law phase at
any measurement rate by adapting a Lieb-Shultz-Mattis–type
anomaly argument to the spin model in the replica trick
with 2Q copies, as first argued in [35]. (See also [64,65],
which generalize this result to statistical symmetries.) Each
of the 2Q copies has SU(2) symmetry, and the replica sym-
metry permutes the replicas. Additionally, under averaging
over the measurements and circuit elements, the replica
model has a Z lattice-translation symmetry. Overall, the
statistical-mechanics model’s symmetry group is G = Z ×
([SU(2)×Q

� SQ] × [SU(2)×Q
� SQ] � Z2) [60]. Each site

contains one (projective) spin- 1
2 representation of each replica

factor of SU(2). Therefore, there is a mixed anomaly between
translation symmetry and the SU(2) spin-rotation symme-
try. This anomaly rules out the possibility of a featureless
(short-range-entangled, symmetry-preserving) ground state.
Moreover, naïvely applying the Mermin-Wagner theorem
rules out spontaneous breaking of the SU(2) symmetry (al-
though subtle examples may violate this principle in the
replica limit [66]). Furthermore, we observe no tendency
towards any spontaneous breaking of the lattice-translation
symmetry. These arguments suggest that no area-law phase
can arise, even in the measurement-only limit.

We can obtain further insight into the strong-measurement
regime through our mapping to an effective-Hamiltonian
model. Each replica has an SU(2) symmetry, which leads
to gapless modes, as noted above, with ferromagnetic in-
teractions and thus z = 2 dynamics. These conclusions are
consistent with the critical phase observed in our numerics.

Using the formalism above, one can calculate Rényi en-
tropies of the reduced density matrix of an interval A. Let
ρ denote any single-copy pure state, and |ρ〉〉 the Q replica
defined on 2Q copies of the Hilbert space. We focus on the
Rényi index n = 2:

e−S2(ρA ) = lim
Q→1

〈〈 ⊗L
i=1 gA

i

∣∣e−βH eff |ρ〉〉〈〈 ⊗L
i=1 e

∣∣e−βH eff |ρ〉〉 . (9)

gA
i = e if i does not belong to the interval A, gA

i =
(12)(34) . . . (2k−1 2k) if i ∈ A, and Q = 2k + 1. We define a
“twist” permutation τ such that τ (⊗L

i=1gA
i ) = ⊗L

i=1e. Using τ ,
we can rewrite (9). Since the initial state is pure, τ |ρ〉〉 = |ρ〉〉,
and

e−S2(ρA ) = lim
Q→1

〈〈 ⊗L
i=1 e

∣∣τ−1e−βH eff
τ |ρ〉〉〈〈 ⊗L

i=1 e
∣∣e−βH eff |ρ〉〉 . (10)

τ , operating on H eff , introduces a twist operator at the in-
terval’s boundary, ∂A: τ−1e−βH eff

τ ≡ T∂A e−βH eff
. Hence, a

size-|A| interval’s Rényi-2 entropy is related to the two-point
correlator of the twist operator acting on sites separated by
a distance |A|. In the infrequent-measurement phase with
spontaneously broken replica symmetry, this correlator decays
exponentially, leading to volume-law Rényi entropies. Intu-
itively, domain walls in this discrete ferromagnetic phase have
finite line tensions. Hence, creating a domain wall costs an
extensive (volume-law) amount of free energy. Under frequent
measurements, in the putative critical phase, the permutation
degrees of freedom are gapped. The twist operator should
likely, instead, couple to the remaining low-energy SU(2)
modes. Analyzing the critical phase’s nature, requiring the
effective Hamiltonian’s replica limit, presents a clear chal-
lenge for future work. This critical phase, with (presumably)
logarithmic entanglement scaling appears unrelated to the
low-energy physics of quenched random Heisenberg spin
chains, whose entanglement scales similarly [67]. Quenched
random Heisenberg chains have z = ∞, in contrast with z = 2
that we observe numerically.

VI. OUTLOOK

We studied the dynamics of monitored random circuits
with SU(2) symmetry, i.e., with three noncommuting charges:
the total spin angular momentum’s components. First, we nu-
merically discovered a purification transition between a mixed
phase (at p < pc ≈ 0.35) and a critical phase (at p > pc). In
the critical phase, the purification time scales as tP ∼ L2. The
purification transition doubles as an entanglement transition,
which separates volume-law (at p < pc) and subextensive
(logarithmic or small-power-law, at p > pc) entanglement
scalings. Even in the measurement-only limit (at p = 1), the
symmetry’s non-Abelian nature enables nontrivial entangle-
ment scaling. Additionally, we observed a spin-sharpening
transition across which there is a parametric change in the
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time at which one can (in principle) learn the system’s total
spin by monitoring measurements. The timescale is t ∼ L2 in
the “spin-sharp” phase and t ∼ L3 in the “spin-fuzzy” phase.

Finally, we interpreted our results within an effective
replica statistical-mechanics model. The model supports the
mixed-phase prediction that tP ∼ eL. Also, the model hints
at a possible spin-wave mechanism for the tP ∼ L2 dynamics
in the critical phase. Furthermore, a Lieb-Schultz-Mattis–type
anomaly obstruction implies the absence of an area-law phase.
Instead, the entanglement should scale logarithmically with L
in the critical phase, consistently with our numerics.

Our results open several opportunities for future work. One
is to understand the purification (entanglement) and sharp-
ening transitions analytically. Second, one might leverage
spin sharpening to observe an MIPT experimentally, avoid-
ing the postselection problem (Sec. I). The thermodynamics
of noncommuting charges have already been observed ex-
perimentally with trapped ions [45]. Superconducting qubits,
quantum dots, and spinful fermionic atoms are natural can-
didates, too [46,47]. Third, our system offers a playground
for numerically exploring the recent result that non-Abelian
symmetries constrain local unitary circuits more than Abelian
symmetries do and so may constrain chaos more [68–71].
Finally, efficient classical and quantum spin-sharpening de-
coders merit exploration.
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APPENDIX A: ADDITIONAL NUMERICS ELUCIDATING
THE ENTANGLEMENT DYNAMICS

AND SPIN SHARPENING

In Fig. 2, we plot log(SA) [see Eq. (3)] against t/L2. We
claimed the different-L curves collapse for p > pc ≈ 0.35 and
presented the plots for up to p = 0.4. To confirm that the
curves remain collapsed for larger p we plot p = 0.6, 0.8, and
1.0 in Fig. 7.

In Sec. III B, we claimed that L2 time steps suffice for the
bipartite entanglement entropy Sf to plateau. Figure 8 justifies
this claim, presenting Sf as a function of log(t ) for � L2 time
steps at the extreme values p = 0, 1. At both extrema, Sf stops
changing (to within minor fluctuations) by L2 time steps.

Section III B also discussed different fittings for Sf versus
L. Figure 9 presents three fittings [L, log(L), and

√
L] at each

of three measurement rates (p = 0, p = 1, and p ≈ pc). At
p = 0, the linear fit is the best. This observation is consistent

FIG. 7. The purification time still reveals a z = 2 phase for p >

0.4. The entropy SA quantifies the ancilla qubit’s entanglement with
the system. We plot log(SA) for clarity, as SA decays exponentially.
t/L2 runs along the x axis to demonstrate the existence of a phase
in which the system purifies over a timescale tP ∼ L2. We used
30 000 samples when L = 8 to 16; 10 000 samples when L = 18; and
1500 samples when L = 20. The y axis’s lower limit is log(10−3) ≈
−6.91.

with the existence of a volume-law phase at p = 0. At p =
0.35 ≈ pc, it is unclear which fit is most accurate. However,
the two nonlinear fits are visibly best. The p = 1 fits resemble
the p = 0.35 ones.

Section IV claimed that our p > p# data are compatible
with a sharpening timescale ∼L2 deep in the critical phase.
Figure 10 justifies this claim. We plot log(SA) against t/L2

at various p values. The initial collapse occurs at p > p#.
The L = 8 numerics deviate from the collapse when p ∈
[0.35, 0.45] ∪ [0.8, 1]. We suspect that these deviations arise
from finite-size effects.

APPENDIX B: MUTUAL INFORMATION

In Sec. III, we studied purification and entanglement dy-
namics. We complement that numerical analysis by studying
mutual information. To introduce the mutual information, we
consider a quantum system in a state |ψ〉. Let A and B denote
subsystems. The reduced state of A is ρA := trĀ(|ψ〉〈ψ |).
The reduced states of B and AB are defined analogously. The
mutual information between A and B is

I (A : B) := S(ρA) + S(ρB ) − S(ρAB ). (B1)

The mutual information upper-bounds equal-time correlators
between local operators acting nontrivially on A alone and
on B alone [72]. We denote by I (1)

j,k the mutual information

FIG. 8. The bipartite entanglement entropy saturates after L2

time steps. At the extreme p values p = 0, 1, Sf quits changing (to
within minor fluctuations).
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FIG. 9. Long-time bipartite entanglement entropy vs system size.
At p = 0, Sf ∼ L, signaling a volume law. At p = 1, the entropy
scales logarithmically or as a small power law: Sf ∼ log(L), or
Sf ∼ √

L.

between sites j and k. We denote by I (2)
j,k the mutual informa-

tion between the pair ( j, j + 1) and the pair (k, k + 1).
Figure 11 presents I (1)

1, j and I (2)
1, j , plotted against j, at L = 20.

I (1)
1, j grows with p and rapidly decays with j.5 At all p, I (1)

j,k
decays rapidly over distances | j − k| larger than a few sites.
This result is intuitive since I (1)

j,k contains information about
correlations between individual spin components, whereas the
measurements and unitaries correlate spin-fusion channels (a
property of two or more spins).

In comparison, I (2)
j,k decays more gradually with the dis-

tance | j − k| at all p > 0. For particular sites j and k,
I (2)

j,k may depend on p nonmonotonically (Fig. 11). How-
ever, the asymptotic decay rate monotonically decreases as
p decreases. To explore this decay rate, we examine the
mutual information between antipodal pairs of sites: I (2)

1,L/2
[Fig. 12(a)]. Given the limitations on system size, we can-
not convincingly determine the asymptotic decay’s functional
form. A power-law decay fits the data reasonably well
[Fig. 12(b)]. The fitted power a gradually decreases with
p. Furthermore, a changes qualitatively around pc = 0.35:
from changing quickly with p, at p < pc, to drifting slowly
near −2, at p > pc. Given the small range of system sizes
available, exponential decay fits the data reasonably well, too;
we cannot rule out this behavior. Yet, given the other critical

5Throughout these numerics, the last layer of gates was applied on
the odd bonds (sites 1 and 2, sites 3 and 4, etc.), leading to larger
I (1)

j, j+1 for odd j than even j.

scaling behavior at p > pc, we expect that power-law decay
to be more natural in this regime. The data also prohibit
confident distinction between (i) one power at p > pc, with
drifts in the fitted exponent, due to finite-size corrections, and
(ii) continuously evolving power laws (as would arise in, say,
a Luttinger liquid).

APPENDIX C: EFFECTIVE HAMILTONIAN

In this Appendix, we map the monitored dynamics onto the
imaginary-time evolution of a replica-effective Hamiltonian.
Since the two-site gates are sampled independently, the above
average over U factorizes over averages of two-site SU(2)-
symmetric gates. We parametrize the SU(2)-symmetric gates
as

Ui, j = Pt + eiθ Ps = eiθPs . (C1)

Pt and Ps denote projectors onto the triplet and singlet sectors
of the SU(2) symmetry on two qubits. i and j denote the qubits
being acted on. We will suppress the subscripts i and j unless
they are needed to avoid confusion. This is similar to Eq. (1),
modulo a global phase factor. The variable θ is sampled from a
random distribution, for example, from a uniform distribution
between 0 and 2π . The Q moment of the unitary gates is

U ≡ U ⊗Q ⊗ (U †)⊗Q = ei
∑

a θ (P(a)
s −P(a∗ )

s ). (C2)

P(a)
s denotes the projector onto the singlet sector for replica

index a. The ∗ symbol implies that the operator operates on
the conjugate (backward) copy of the a replica (with a =
1, 2, . . . , Q). We assume that θ is sampled from a Gaussian
distribution P(θ ) = 1√

2πJ
e−θ2/(2J ), where J is a large constant

controlling the unitary dynamics’ scrambling strength. Per-
forming average over θ yields

∫
dθ P(θ )U = exp

⎛
⎜⎝−J

⎧⎨
⎩

Q∑
a=1

[
P(a)

s − P(a∗ )
s

]
⎫⎬
⎭

2
⎞
⎟⎠

≡ exp
( − Hu

i j

)
. (C3)

To model measurements in the continuum-time limit, we
consider the weak-measurement protocol of [58]. The action
of the measurement of a local operator O on the replica density
matrix is described as ∑

m

P⊗Q
m ρ (Q)P⊗Q

m (C4)

→
∫

dm e−γ
∑Q

a=1[(Oa−m)2+(Oa∗ −m)2]ρ (Q)

= exp

⎛
⎝−γ

2Q∑
a,b=1

Oa�abOb

⎞
⎠ρ (Q)

≡ exp(−γ Hm )ρ (Q). (C5)

m denotes the weak measurement outcome, and �a,b = δa,b −
1/(2Q). We have identified (a∗) with index (Q + a) and a =
1, 2, . . . , Q. From now on this identification will be implicit
whenever the replica index a is summed from 1 to 2Q. As
in the main text, γ denotes the weak-measurement strength.
For SU(2)-symmetric systems, we measure the operators
O = �Si · �S j .
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FIG. 10. In the critical phase, the numerics are consistent with a ∼L2 sharpening timescale. The entropy SA quantifies the ancilla qubit’s
entanglement with the system. We plot log(SA) for clarity, as SA decays exponentially. t/L2 runs along the x axis to demonstrate the numerics
are consistent with a ∼L2 sharpening timescale. We used 30 000 samples when L = 8 to 14; and 10 000 samples when L = 16 to 18. The y
axis’s lower limit is log(10−3) ≈ −6.91.

The expressions above are for averages of single two-site
unitary gates and measurements. We combine these local av-
erages and assume a Trotter decomposition. The monitored
evolution of the density matrix’s averaged Qth moment is
given by imaginary-time evolution under an effective Hamil-
tonian H eff : ρ (Q)(t ) = e−tH eff

ρ
(Q)
0 . The effective Hamiltonian

decomposes as H eff = ∑
i(H

u
i,i+1 + Hm

i,i+1), with

Hm
i, j = γ

∑
a,b

(�Sa
i · �Sa

j

)
�a,b

(�Sb
i · �Sb

j

)
. (C6)

The long-time properties of ρ (Q)(t ) are thus described by
low-temperature (ground state) properties of H eff . The Hamil-
tonian has a SQ × SQ symmetry, corresponding to the global
permutation among the Q forward replicas and Q backward
replicas.

FIG. 11. Mutual information between sites. The mutual informa-
tion between (a) sites 1 and j decays more quickly than between
(b) sites (1,2) and ( j, j + 1). The inset highlights how I (2)

j,k increases
and then decreases as p grows, for some j. The error bars represent
one standard deviation.

A more illuminating way of understanding the structure of
the Hamiltonian’s ground states is to combine spin- 1

2 particles
at replica a and σ (a), to form a fundamental representation
of SU(4). The Hamiltonian’s unitary part, in this identifica-
tion, can be written as [the label σ signifies that we have
combined replicas (a, σ (a)) to form an SU(4) representa-
tion] Hu = J

2 (H0[σ ] + V u[σ ]). The H0[σ ] are Q copies of the
SU(4) ferromagnet, and

V u[σ ] =
∑

i

∑
a<b

(
Swa

i,i+1 − Swσ (a)∗
i,i+1

)(
Swb

i,i+1 − Swσ (b)∗
i,i+1

)
.

(C7)

FIG. 12. Mutual information at antipodal sites. We call sites 1
and L/2 antipodal. (a) log(I (2)

1,L/2) is plotted against log(L) at several L

values. Using the fit function log(I (2)
1,L/2) = a log(L) + b, we identify

the critical exponent a in I (2)
1,L/2 ∼ La. (b) Plotting a against p, we find

that I (2)
1,L/2 decays as a power law in both phases, where a seems to be

drifting.
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Swa
i, j denotes the SWAP operator between the spins at sites i

and j in replica index a: Swi, j = 1/2 + 2�Si · �S j . In terms of
these SWAP operators, the SU(4) ferromagnet is

H0[σ ] =
Q∑

a=1

∑
i

[
1 − (

Swa
i,i+1

)(
Swσ (a)∗

i,i+1

)]
. (C8)

The measurement part of Hamiltonian also decomposes
into two terms. One part is the SU(4) ferromagnet, Hm =
γ

Q H0[σ ] − γ

2QV m[σ ], where

V m[σ ] =
∑

i

∑
a �=b

(
Swa

i,i+1 + Swσ (a)∗
i,i+1

)(
Swb

i,i+1 + Swσ (b)∗
i,i+1

)
.

(C9)
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