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Autonomous quantum machines (AQMs) execute tasks without requiring time-dependent exter-
nal control. Motivations for AQMs include the restrictions imposed by classical control on quantum
machines’ coherence times and geometries. Most AQM work is theoretical and abstract; yet an
experiment recently demonstrated AQMs’ usefulness in qubit reset, crucial to quantum comput-
ing. To further reduce quantum computing’s classical control, we propose realizations of (fully
and partially) quantum-autonomous gates on three platforms: Rydberg atoms, trapped ions, and
superconducting qubits. First, we show that a Rydberg-blockade interaction or an ultrafast tran-
sition can quantum-autonomously effect entangling gates on Rydberg atoms. One can perform
Z or entangling gates on trapped ions mostly quantum-autonomously, by sculpting a linear Paul
trap or leveraging a ring trap. Passive lasers control these gates, as well as the Rydberg-atom gates,
quantum-autonomously. Finally, circuit quantum electrodynamics can enable quantum-autonomous
7Z and XY gates on superconducting qubits. The gates can serve as building blocks for (fully or

partially) quantum-autonomous circuits, which may reduce classical-control burdens.

I. INTRODUCTION

Autonomous quantum machines (AQMs) undertake
tasks without relying on time-dependent external con-
trol [I, 2]. Researchers have proposed AQMs includ-
ing quantum refrigerators [3, M], engines [5H7], Maxwell
demons [8, @], clocks [I0HIZ], and detectors [13], as well
as a molecular error-correcting machine [14]. Natural
AQMs include a molecular switch that enables vision [15].
Artificial AQMs have recently been realized with trapped
ions [I6] and superconducting qubits [I7, [18]. An au-
tonomous quantum refrigerator reset a superconducting
qubit to near its ground state [I7], as required for quan-
tum computation [19].

Granting quantum machines (partial or full) autonomy
is challenging but may improve performance and lower
costs. Building nonautonomous quantum devices re-
quires substantial funding, innovation, and patience [20].
Hence autonomy may seem like an unnecessary hurdle.
Yet classical control limits quantum devices. For exam-
ple, control wires limit the number of superconducting
qubits that can fit on a chip. Classical wires also in-
troduce heat and noise, suppressing coherence [21] 22].
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Furthermore, lowering quantum devices’ energy costs
can enhance quantum advantages over classical counter-
parts [23]. Macroscopic control equipment consumes or-
ders of magnitude more energy than the quantum de-
vices controlled. In contrast, consider controlling clas-
sical devices. This task often costs an amount of work
comparable, or negligible compared, to the devices’ en-
ergy scales. For example, setting a thermostat takes little
energy; the climate-control system requires much more.
Freeing quantum devices from classical control may en-
hance efficiencies, as well as coherence times and scaling.

In defining AQMs, we follow [2]. An AQM exe-
cutes a task, potentially by harnessing multiple compo-
nents. Quantum theory describes the machine usefullyE
The microscopic Hamiltonian responsible for the AQM’s
mission remains constant, once one actuates the AQM
(“presses go”). However, one can exert time-dependent
external control in building and initializing the AQM.
These rules echo a drone’s autonomy: one constructs
a drone and charges its battery using time-dependent
control, perhaps by leveraging factory equipment. Af-
ter activation, though, the drone delivers packages inde-

1 Quantum theory describes nearly everything, but it provides un-
helpful models of many objects. For example, classical mechanics
models wrenches more usefully than quantum theory does.
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pendently. Because an AQM’s microscopic Hamiltonian
remains constant, no external system spends thermody-
namic work on accomplishing the machine’s task [24-
20]. However, an external system may perform work on
machine components that do not directly contribute to
the machine’s mission ([2] and Sec. [[II B). AQMs differ
from quantum machines controlled by autonomous clas-
sical systems such as classical artificial intelligence: no
classical system controls any AQM (in any way that con-
tributes directly to the AQM’s mission). To distinguish
the machine types, we sometimes use the term quantum-
autonomous.

Autonomous quantum computation has attracted in-
terest recently. In one approach (dissipative quantum
computation), a quantum system couples to a tailored
environment [27H31]. The environment guides the sys-
tem toward a steady state that encodes a computation’s
output. In an abstract-theory approach, researchers de-
signed an autonomous quantum processing unit [32].
A quantum state encodes a program, which directs
the processing unit to enact unitaries on the compu-
tational register. In another abstract-theory approach,
Woods showed that quantum control can increase quan-
tum gates’ speeds (as functions of resources such as en-
ergy) [33]. We complement these approaches, propos-
ing experimental implementations of (mostly) quantum-
autonomous gates.

We design mostly quantum-autonomous gates for three
platforms: Rydberg atoms, trapped ions, and supercon-
ducting qubits. Section[|shows how to perform quantum-
autonomous entangling gates on Rydberg atoms, lever-
aging Rydberg-blockade interactions and ultrafast tran-
sitions. Section [[T]] details implementations of Z and en-
tangling gates on trapped ions. These mostly quantum-
autonomous schemes rely on certain trapping potentials
(sculpted linear Paul traps and ring Paul traps). Sec-
tion [[V] describes quantum-autonomous Z and XY gates
for superconducting qubits. These gates benefit from cir-
cuit quantum electrodynamics (QED). Sectionmoutlines
directions for future work. Our gates can serve as build-
ing blocks for (fully or partially) quantum-autonomous
circuits.

The following notation appears across the paper. o,
denotes the Pauli-a operator, wherein o € {z,y,z}. If s

denotes or indexes a system, U((f) represents that sys-
tem’s Pauli-a operator. The o, eigenstate [0) = |1)
corresponds to the eigenvalue 1; and [1) = |]), to —1.
The raising and lowering operators have the forms o4 =
1(oy tioy). We set A to 1.

II. RYDBERG ATOMS

Rydberg-atom quantum computation has advanced
rapidly over the past few years [34H36].

Section [[I A
reviews relevant features of the platform. Section
describes quantum-autonomous gates based on Rydberg-
blockade interactions and on ultrafast transitions. Ap-

pendix [A] outlines a more challenging alternative, based
on the Levine-Pichler gate. It frees Rydberg-blockade
gates from single-atom laser manipulations [37].

II A. Background: Rydberg-atom quantum
computing

This subsection overviews relevant features of
Rydberg-atom quantum computers. We describe the
platform in Sec. Rydberg-blockade controlled-Z
gates in Sec. and ultrafast controlled-Z gates in
Sec.

I A 1. Architecture of Rydberg-atom array

A Rydberg atom is an atom in a high-energy electronic
stateﬂ Such a Rydberg state |r) corresponds to a large
principal quantum number, such as n = 70. Commonly
used elements include Rb, Cs, Yb, and Sr [38-40]. Two
lower-energy levels, labeled |0) and |1), form a qubit.

Rydberg atoms A and B can interact strongly under
two sets of circumstances. First, suppose that an A is in
a Rydberg state. A shifts the energy of B’s |1)—|r) tran-
sition. The shift exceeds the transition’s Rabi frequency.
If subject to a laser pulse resonant with the |1)—|r) tran-
sition, B cannot jump to |r). A induces a Rydberg block-
ade. Second, suppose that A and B are simultaneously
excited to Rydberg states. The atoms couple strongly
via a dipole-dipole Rydberg interaction.

IT A 2. Rydberg-blockade controlled-Z gate

Using the Rydberg blockade, one can implement a
controlled-Z gate [34], [41]. Denote the control qubit by
C and the target qubit by 7. The qubits are ideally in
a joint state |ct) (wherein c,t € {0,1,r}) at each step
of the protocol. Lasers can couple the state [1)¢r to
the Rydberg state |r)¢c 1, as detailed below. Throughout
this subsubsection, all pulses drive the |1)—|r) transition.
The splitting between |0) and |1) is sufficiently large that
pulses cannot affect any atom in |0).

A three-pulse sequence effects a controlled-Z gate:

1. A m-pulse maps the control atom’s |1)¢ state to the
Rydberg state: |1)c — |r)c.

2. A 27-pulse maps the target atom’s |1)r state to the
Rydberg state and back: [1)r — |r)7 — |1)7.

3. Another m-pulse maps the control atom’s Rydberg
state back to |1)¢: [r)o — [1)e.

2 Colloquially, the term refers to an atom undergoing a protocol
during which the atom (or similar atoms) is sometimes in a high-
energy state. We adopt this usage.



The pulse sequence effects a controlled-Z gate as fol-
lows. First, suppose the atoms begin in |00). All pulses
are off-resonant with the |1)—|r) transition, so the atoms’
state remains constant. Second, suppose the atoms be-
gin in |10). Pulse 2 is off-resonant, so the target’s state
remains constant. Pulses 1 and 3 rotate the control’s
Bloch vector through a total angle of 2w. The joint
state acquires a 7 phase shift: [10) — e!"|10) = —|10).
Third, the joint initial state |01) picks up the same shift:
|01) — —|01). Fourth, suppose the atoms begin in |11).
Pulse 1 leaves the control qubit in |r). The blockade pre-
vents pulse 2 from exciting the target to |r), so the tar-
get remains in |1)p. Pulse 3 returns the control to |1)¢.
The joint state acquires a 7 phase shift: |11) — —|11).
Across all four initial states, the pulse sequence enacts a
controlled-Z gate, to within a global phase.

A Rydberg-blockade gate’s time scale equals the |1)—|r)
transition’s inverse Rabi frequency. Such gates typi-
cally last for hundreds of nanoseconds [4I]. A shorter,
nanosecond-scale gate, described in Sec. [T A3] does not
require a Rydberg blockade [42] [43].

II A 8. Ultrafast entanglement generation

Unlike the Rydberg-blockade gate, the ultrafast op-
eration features two atoms simultaneously in Rydberg
states [42] [43]. The atoms arrive in those states due to
ultrashort laser pulses, which last for picoseconds or fem-
toseconds. The Rydberg-blockade interaction requires a
longer time to act. Hence the blockade does not have
time to shift the atoms’ energy levels during the exci-
tation process. Nearby atoms can therefore reach their
Rydberg states simultaneously. They then entangle via
the Rydberg dipole-dipole interaction.

Chew et al. implemented an ultrafast energy ex-
change [42]. They excited two 8"Rb atoms into |dd) =
|[43D,43D), whereupon interactions caused oscillations
with |pf) = %(|45P,41F> + |41F,45P)). One oscillation

maps |dd) to —|dd) in = 2 nsE| This phase can enable a
quantum gate: the computational basis could consist of
two states in the 55/, manifold [44]. A pulse sequence
would map one computational-basis state to |dd). If the
atoms began in a superposition of computational-basis
states, the reported oscillation would introduce a rela-
tive phase. In the spirit of [42], we focus in Sec.
on implementing one portion of the gate protocol—the
relative-phase portion—quantum-autonomously.

3 The oscillation introduces the phase as follows. Denote by J the
strength of the coupling between |dd) and |pf). Over a time ¢,
|[dd) evolves to cos(Jt)|dd) — isin(J¢)|pf). At t = 7/J = 2 ns,
the system returns to |dd), but having picked up a 7 phase.

II B. Quantum-autonomous entangling of Rydberg
atoms

Section describes a quantum-autonomous imple-
mentation of the Rydberg-blockade controlled-Z gate. In
Sec. we propose quantum-autonomous ultrafast
entanglement generation.

II B 1. Quantum-autonomous Rydberg-blockade gate

Here, we show how to implement Rydberg-blockade
controlled-Z gates quantum-autonomously. First, we ar-
gue that passively mode-locked lasers (PMLLSs) can op-
erate quantum-autonomously. Second, we show that
they can drive the Rydberg transition. Third, we show
how they can generate a pulse sequence that effects a
Rydberg-blockade gate. The final argument relies on
PMLLs’ ability to serve as autonomous quantum clocks
prevalent in the AQM literature [10].

The Rydberg-blockade gate requires three laser pulses
(Sec. . A laser pulses when a classical control
system turns it on and off. This control precludes quan-
tum autonomy. However, quantum autonomy allows for
a fixed-frequency laser free from time-dependent control.
PMLLs offer this possibility [45].

Mode-locked lasers combine longitudinal cavity modes
of different frequencies. When the modes are phase-
locked (when their phases coincide), they interfere con-
structively to produce high-intensity outputs. This tech-
nique is widely used to generate ultrashort pulses, which
typically last for picoseconds or femtoseconds [46].

Many PMLLs require no external control to pulse.
They contain saturable absorbers that let high-intensity
waves through while absorbing low-intensity waves [45].
To elaborate on PMLLs’ autonomy, we recall how las-
ing works [47]. A laser contains a gain medium, a large
set of atoms that begin mostly excited (with popula-
tion inversion). Extra photons enter the gain medium,
stimulating emissions from a few atoms, which stimu-
late more emissions. When enough atoms de-excite, the
lasing ends unless the gain medium undergoes repump-
ing (to reinstate population inversion). Such repumping
conventionally involves time-dependent external control
incompatible with autonomy. Hence a PMLL can partic-
ipate in an AQM if the gain medium’s initial population
inversion powers all the 1asingE|

Having argued that PMLLs can operate quantum-
autonomously, we argue that they can enable Rydberg-
atom gates: PMLLs can emit pulses of the appropriate
duration, frequency, and regularity. First, we support
the duration claim generally. Then, we support all three

4 Alternatively, the pumping mechanism might be another au-
tonomous quantum system, such as a large negative-temperature
quantum reservoir.



claims by analyzing an implementation of a Rydberg-
blockade gate.

During a Rydberg-blockade gate, atoms transition be-
tween |1) and |r) due to pulses that last for hundreds
of nanoseconds [34]. PMLLs can produce such pulses,
despite their often producing ultrashort pulses [48, [49].
Also, a mode-locked laser emits a train of pulses quickly
and stably [50]. Therefore, one can form a long pulse by
stringing together short pulses.

We now review an experimental implementation of a
Rydberg-blockade gate and argue that PMLLs can pro-
vide pulses with the necessary characteristics (pulse du-
ration, wavelength, and regularity) [51]. Figure [1f illus-
trates a 5"Rb atom’s [1) = |55 5, F=2, mp=2) and |r) =
|58 D3 /9, F=3, mp=3) states in an energy-level diagram
[51]. A two-photon process couples the states: |1) cou-
ples to the intermediate state [i) = [5P) /o, F'=2, mp=2),
which then couples to the Rydberg state.

FIG. 1: Energy-level diagram for a 5"Rb atom (simplified
from [51]). A two-photon process couples the qubit state |1)
to the Rydberg state |r). The lasers are detuned from |0)—|1)
and |1)—|r) transitions, so the process does not suffer from
|i)’s lossiness.

Gaétan et al. performed a controlled-Z gate on 8"Rb
atoms, using the pulse sequence described in Sec.
[51]. Two lasers implemented the |1)—|r) transition via a
two-photon process (Fig. and stepin Sec. . One
laser was detuned from the |1)—|i) gap, and the other laser
from the |i)—|r) gap, by an amount §. (§ was large enough
that the system never had a substantial population on |i),
whose short lifetime would have threatened the atomic
state’s coherence.) The lasers’ frequencies summed to
the |1)—|r) gap. The lasers operated simultaneously, for
approximately 70 ns [51]. PMLLs can emit pulses of such
durations [48, 49].

PMLL pulses can exhibit not only the durations, but
also the wavelengths, needed to drive Rydberg transi-
tions. A 795 nm pulse drives the |1)—|i) transition [5I].
Typical PMLLs have similar wavelengths, e.g., 780 nm
to 2 pm [50, 52]. In contrast, a 474 nm pulse drives the
[i)—|r) transition. To achieve such a short wavelength, one
could employ a 948 nm PMLL and double the frequency
using a nonlinear crystal [53].

PMLLs can drive not only the |1)—|r) transition, but
also a Rydberg-blockade gate. The nonautonomous gate

protocol requires lasers to address different atoms at dif-
ferent times (Sec. . Some clock must prompt each
laser to turn on at the right instant. PMLLs can serve as
autonomous quantum clocks, we argue next, aside from
being able to drive the |1)—|r) transition.

A PMLL can act as a reliable autonomous quantum
clock, an AQM that regularly emits energy pulses called
ticks [10]E| PMLLs’ laser pulses can serve as ticks. The
pulses are regular [50], so PMLLs can keep time accu-
rately. If driving a Rydberg transition, a PMLL keeps
time for one atom.

Another PMLL can keep time for a whole Rydberg-
blockade protocol, we now show. For simplicity, we de-
scribe how a PMLL can time two other lasers that drive
the Rydberg transition. The approach extends to more
driving lasers, however. Suppose that transition-driving
lasers L1 and Lo emit consecutive pulses. For example,
Ly can help perform the 7-pulse in step [T] of Sec. [T A2}
and Lo, the 27-pulse in step[2l L1 should emit a pulse at
time ¢t = 0; and Lo, at some time ¢ =T > 0. An auxiliary
laser L, can tell Ly that an interval T has elapsed since
Ly pulsed, according to the following protocol. Let ¢ de-
note the speed of light in a Vacuumﬁ L, is set a distance
d = T from Ls. One activates L; and L, simultane-
ously. After a time T', L,’s pulse reaches Lo. This pulse
stimulates Lo to fire.

We estimate the distance, and demonstrate its feasi-
bility, as follows. Recall the controlled-Z gate performed
by Gaétan et al. [5I]. A laser pulse drove the |1)|r)
transition over a duration 7'~ 70 ns. Since d = T, L,
should lie a few meters from Ls. Several-meter-long op-
tical fibers can delay light in experiments, so the control-
clock scheme is feasible.

II B 2. Quantum-autonomous ultrafast entanglement

generation

Here, we propose quantum-autonomous version of ul-
trafast entanglement generation (Sec. . We sketch
the protocol first. Then, we argue that PMLLs can
(quantum-autonomously) provide the necessary pulses.
Their stability may mitigate a challenge to the nonau-
tonomous protocol: laser-pulse imprecision.

The quantum-autonomous ultrafast gate, echoing the
nonautonomous gate (Sec. , proceeds as follows.
First, a laser L; emits a picosecond-length pulse at both
atoms. After roughly another picosecond, a laser Lo
emits another picosecond-length pulse, at an auxiliary
laser’s command. Together, L1 and L, drive both atoms
to Rydberg states, through via transitions like the one

5 Autonomous quantum clocks are quantum-autonomous in the
sense of Sec. [[] They are not atomic clocks [54] operated via
autonomous classical control.

6 Rydberg-atom platforms’ environments are near-vacuums [38]
55].



depicted in Fig. [l} The atoms interact via dipole-dipole
coupling for a few nanoseconds. If ~ 5 pum separate the
atoms, the state accumulates a conditional m phase af-
ter &~ 2 ns [42]. To halt the interaction, auxiliary lasers
trigger pulses from additional lasers that de-excite both
atoms.

Having outlined the protocol, we identify the laser re-
sources needed to drive it, by specifying the atomic tran-
sitions involved. The experiment described in [42] in-
volved three atomic levels of 3" Rb: from least to greatest
energy, |g) = |5S5), |e) = |5P), and the Rydberg state
|d) = |43D). A two-photon process (effected by two
lasers) excites an atom from |g) through the interme-
diate |e) to |d). Onme laser is resonant with the |g)—|e)
transition. The atom must not remain in |e) for long,
lest the level’s population decay. Hence the second laser
must turn on soon after the first (after a picosecond-scale
interval). When in |d), two nearby atoms undergo the
dipole—dipole interaction that enacts the gate.

Having specified the atomic transitions involved, we
describe the laser resources required to drive them,
demonstrating that PMLLs can fulfill these requirements.
A two-photon process drives the |g)—|d) transition. The
first step (the |g)—|e) transition) requires a 780 nm pulse
that lasts for ~ 1 ps.

PMLLs, renowned for providing ultrashort pulses, can
satisfy these requirements [50]. The second step (the
le)—|d) transition) requires a 480 nm pulse that lasts for
~ 10 ps. A PMLL can attain this wavelength via fre-
quency doubling (Sec. [[I B 1)). The pulse length falls
within the range frequently achieved by PMLLs [50].

Laser-pulse instability threatens ultrafast
dipole—dipole gates. The ultrafast gates of [42] re-
lied on pulses that achieved a 75 % population of each
atom’s |d) state. The lasers suffered from pulse-energy
fluctuations of =~ 30 %, limiting the Rydberg-excitation
fidelity. PMLLs may mitigate this shortcoming: they
emit pulses regularly and stably, and their pulse-energy
fluctuations can be <1 % [56].

III. TRAPPED IONS

Here, we propose partially autonomous quantum gates
for trapped ions. In Sec. [[II_A] we overview conven-
tional Z and Mglmer—Sgrensen (entangling) gates for
trapped ions. We review ion traps, and compare them
with the requirements of quantum autonomy, in Sec. [ITI]
Bl Section [[II_C| shows how tailored trapping poten-
tials can enable partially quantum-autonomous Z and
Mglmer—Sgrensen gates. Ring traps, too, can implement
partially quantum-autonomous Mglmer—Sgrensen gates,
we show in the same subsection.

IIT A. Background: Trapped-ion quantum
computing

In trapped-ion quantum computing, an ion’s inter-
nal (electronic) states serve as a qubit’s logical states.
Species used include 40Ca™ [57], 137Ba™ [58], 171Yb™
[59], 88Sr™ [60], and 9Be*t [61]. A calcium ion’s |Sy o)
and |D,/5) form a qubit, for example.

In the most common geometry, the ions form a chainﬂ
It has normal vibrational modes that can transfer infor-
mation between different ions’ electronic degrees of free-
dom (DOFs). The modes correspond to a simple har-
monic oscillator. Let n denote the vibrational quantum
number; and let a,b € {|1),|})} label two ions’ electronic
states. Entangling gates involve states of the form |abn).

T A 1. Z gate

In reviewing the trapped-ion Z gate, we follow [62]E|
Let © denote an ion transition’s Rabi frequency. A Z
gate requires a laser whose frequency is detuned from 2
by some amount A # 0. A laser wavelength of 397 nm
serves. The laser shifts the ion’s transition frequency by

0= %. The shift leads to the unitary e=07=/2

1T A 2. Mglmer—Sgrensen gate

This section reviews the Mglmer—Sgrensen gate, which
entangles two ions by coupling their internal states to a
shared vibrational mode [64], [65]. Below, we detail the
protocol and specify the laser resources required.

In detailing the gate protocol, we follow [65]. Let wy
denote each qubit’s energy gap; and v, a vibrational
mode’s frequency. One illuminates the ions with two
lasers of different frequencies, which satisfy three con-
ditions: (i) The frequencies sum to 2wy. They therefore
drive the two-photon transition [{|) <> [11). (ii) Neither
laser has a frequency wy. Consequently, neither laser ex-
cites either ion individually. (iii) The lasers are detuned
from the motional sidebands, keeping the ions’ state in
the computational subspace. To show how the lasers do
so, we imagine they are resonant with the motional side-
bands, having frequencies wg & v. The lasers map |} n)
not only to |11 n), but also to states outside the compu-
tational subspace: |1} (n+1)) and |}1 (n+1)). One can
suppress these transitions by introducing a large-enough
detuning A into the lasers’ frequencies: wyo = v F A. In

7 One of our proposals involves a ring geometry, but discussing
chains suffices here.

8 An alternative scheme effects fast gates, which require times
much shorter than the ion motion’s characteristic time scale
[44, [63]. Our quantum-autonomous gates rely on ion-trap fea-
tures suited to longer interaction times. We therefore focus on
standard single-qubit gates, which last for microseconds.



an experimental realization, the frequencies assumed the
values wg = 27w x 411 THz, v = 27 x 1.23 MHz and
A =20 kHz [66]. Operating for a time 1/A =~ 50 us, the
lasers prepared the entangled state (|}) +[11))/v/2.

IIT B. Ion traps and quantum autonomy

In this subsection, we describe ion traps and their par-
tial enabling of quantum autonomy. We focus on Paul
traps, due to their commonness in quantum computing
and for simplicity. However, our second gate proposal
(Sec. involves a ring trap, which can be a Pen-
ning trap [67].

Paul traps are the most popular ion traps applied in
quantum computing. They confine ions using oscillating
radio-frequency electric fields [67]. Paul traps shape ions
into crystals whose geometries depend on the electrodes’
arrangement. Four cylindrical electrodes can form a lin-
ear Paul trap. Alternatively, the electrodes can lie in a
plane, trapping ions above it [68]. By using more planar
electrodes, one can form a microfabricated surface trap
that generates an arbitrary potential. Examples include
rings [69].

A Paul trap’s electric fields oscillate because the trap
voltages vary. This variation changes the ions’ micro-
scopic Hamiltonian; the classical trap performs thermo-
dynamic work on the ions’ information-bearing DOF's.
This changing and this work prevent the ions from act-
ing as an AQM: by definition, the microscopic Hamil-
tonian responsible for undertaking an AQM’s mission
must remain constant [2]. No classical control system
may directly facilitate that mission by performing work.
One might expect the trap merely to stabilize the ions’
spatial DOFs, rather than enacting gates. Such control
could enable the ions to form an AQM. (Such control
facilitates our Rydberg-atom and superconducting-qubit
protocols, as discussed in App. ) However, traps help
enact gates in the next subsection’s protocols. For ex-
ample, a ring trap spins ions in a circle, passing them
through lasers that effect gates. Nevertheless, the lasers
in our trapped-ion proposals—the tools that effect gates
most directly—are quantum-autonomous, the next sec-
tion shows. Hence the following gate protocols are par-
tially quantum-autonomous.

III C. Partially quantum-autonomous trapped-ion
gates

Section shows how to implement Z

and Mglmer—Sgrensen gates partially quantum-
autonomously, by tailoring a potential to form a slide.
Ring trips can enable partially quantum-autonomous
Mglmer-Sgrensen gates, too, we show in Sec.

III C 1. Tailored potential slide

Our first trapped-ion proposal relies on a tailored po-
tential. We describe the setup, its feasibility, and the
extent of its quantum autonomy below. Then, we intro-
duce the flash-lamp-pumped lasers that effect the gates.
Finally, we argue for Z and Mglmer—Sgrensen gates’ fea-
sibility.

The proposal features the following setup. The trap
forms a spatial gradient along which ions slide (Fig. [2).
Laser beams, emitted by flash-lamp-pumped lasers, shine
on particular locations. If an ion passes through a beam
alone, it undergoes a single-qubit gate. If two ions pass
through a beam simultaneously, they undergo a two-
qubit gate.

lons

..\

Potential

Gate

Gate

FIG. 2: Ions sliding down a potential gradient. Laser
beams (yellow) implement gates.

The proposal involves a spatially varying potential and
so an electric-field gradient. One can effect such a poten-
tial (or any other potential) using a Paul trap with an
intricate-enough electrode structure [70]. Surface traps
with multiple electrodes can serve this purpose [71] 72]E|
The potential ramp transports the ions axially. Lasers
drive the gate by coupling internal electronic states to
radial motional modes. Therefore, the axial transport
does not directly affect the ions’ internal states.

The gate is quantum-autonomous, to within the con-
siderations of Sec. The setup (laser placement and
pumping, electrode arrangement, and loading of ions into
the trap) takes place prior to the gate protocol. In-
stantiating the potential amounts to “pressing go” on
the AQM. The ions will begin rolling down the poten-
tial slide, as nothing is pinning them to the top. The
laser beams shine throughout the protocol, as detailed
below. Hence the ion-and-laser system evolves under a
time-independent Hamiltonian, apart from experiencing
the trap’s electric-field oscillations.

One final component of the setup needs detailing: the
flash-lamp-pumped lasers that effect the gates. A flash

9 Our scheme differs from the ion-transport protocols in [73HT7].
There, one adjusts direct-current voltages midprotocol. The ad-
justment shifts the trapping potentials’ minima, displacing the
ions. This adjustment renders the protocols nonautonomous.
Furthermore, several of the papers focus on transporting, rather
than performing gates on, ions [73H76].



lamp is a gas-filled tube that emits light when trig-
gered by a pulse [45]@ Flash-lamp-pumped lasers emit
pulses that typically last for microseconds or milliseconds
[78]. Hence these lasers can provide the microsecond-
long pulses required for trapped-ion gatesH Further-
more, one can charge a flash lamp’s capacitor before im-
plementing a gate. Therefore, flash-lamp-pumped lasers
can enable quantum-autonomous control.

Having described the general setup, we detail (partially
quantum-autonomous) Z gates and Mglmer—Sgrensen
gates. First, we show that the above setup can achieve
the parameter values needed to implement a Z gate.
Consider a 43Ca™ ion that has hyperfine qubit states
) = 487,070 and 1) = |457,>M 7). Ex-
perimentalists have rotated such a qubit’s Bloch vector
through an angle 7/2 about the z-axis, by driving a Ra-
man transition for 7.5 us [(9]. We now argue that our
protocol can keep the ion in the laser beam for ~ 7.5
wps. In an adiabatic-transport experiment, ions moved at
speeds ~ 3.7 m/s [(6]. At this speed, an ion remains
in the beam for ~ 7.5 us if the beam has a diameter
of ~ 27.8 microns. Such diameters are realized in com-
mon experimental settings [80]. Furthermore, industrial
flash-lamp-pumped lasers support wavelengths from 266
to 2,940 nm [81][] Such lasers can achieve the 397 nm
wavelength required for a single-qubit gate [62]. The po-
tential slide can therefore effect the Z gate.

The slide can effect also a Mglmer—Sgrensen gate. Dur-
ing it, two ions slide together. They pass through a
bichromatic laser beam detuned from their qubit and
shared-motional-mode frequencies. The shared mode
transfers excitations between the ions’ electronic DOFs.

Flash lamps can achieve the necessary specifications.
We focus on 40Ca™ ions, as two such ions have undergone
a transport protocol while sharing a motional mode [77].
Reference [66] reports a high-fidelity Mglmer—Sgrensen
gate implemented on calcium ions. The gate lasted for
50 ps. Let us show that, in the slide protocol, the ions
can remain in a laser beam for this duration. The ions
can move at a speed of ~ 0.5 m/s, as explained two para-
graphs ago. Hence the beam needs a diameter of ~ 25
pum, as achieved in [82]. Flash-lamp-pumped lasers can
achieve not only the required diameter, but also the re-
quired wavelength: in [66], the relevant optical transition
requires a laser of wavelength 729 nm, well within flash-
lamp-pumped lasers’ capabilities [81].

10 The flash lamp is not the laser; rather, it pumps the laser: in
flash-lamp pumping, one charges a capacitor. A trigger electrode
discharges the capacitor, which energizes the lamp’s gas. The
excited gas flashes, pumping the laser’s gain medium.

1 Tn contrast, PMLLs (the quantum-autonomous lasers of Sec.

emit picosecond- and nanosecond-scale pulses.

Jertain equipment, instruments, software, or materials are iden-
tified in this paper to specify the experimental procedure ade-
quately. Such identification is not intended to imply recommen-
dation or endorsement of any product or service by NIST; nor is
it intended to imply that the materials or equipment identified
are necessarily the best available for the purpose.

III C 2. Ring-trap autonomous gate

Like a potential slide, a ring trap (Sec.
and [69,[83] [84]) enables a partially quantum-autonomous
gate. First, we sketch the gate protocol. Then, we re-
view equipment specifications required in similar nonau-
tonomous setups. These specifications, we argue, are
feasible in our setup. For simplicity, we focus on
Mglmer—Sgrensen gates; but our strategy can extend to
7 gates.

Figure [3]illustrates the partially quantum-autonomous
Mglmer—Sgrensen gate. Two ions rotate along a ring. A
bichromatic laser beam illuminates two segments of the
ring. As one ion enters one segment, the other ion enters
the other segment. The ions pass into and out of the
segments several times, until the laser is discharged, as

in Sec. I C 1l

—__.-----...
< "

~

FIG. 3: Partially quantum-autonomous Mglmer—Sgrensen
gate implemented with a ring trap. The black disks
represent ions. Their trajectory forms the dashed line. A
bichromatic laser shines on two ring segments, driving
internal transitions in the ions.

To identify the required laser specifications, we re-
view relevant features of two experiments [66] [84]. Both
featured calcium ions. In one, the ions underwent a
Mglmer—Sgrensen gate [66]. The gate relied on a laser
pulse that lasted for ~ 50 us. The second experiment
featured a ring trap [84]. Two ions rotated at a frequency
of 100 kHz on a circle of radius r = 3.13 umﬁ

Applying these numbers, we can begin to estimate, and
argue for the practicality of, the equipment specifications
required for our gate. First, the gate requires a laser pulse
of ~ 50 us [66]. Flash-lamp-pumped lasers can produce
pulses of this duration; their pulse lengths range from the
microsecond to the millisecond scale [78§].

Second, we estimate how many times the ions pass
through the laser beams during this time interval. To do
so, we must estimate the angle subtended by the laser
beam (at one of its intersections with the ring) (Fig. [3]).

13 The authors also achieved control crucial for two-qubit gates, in-
directly supporting our proposal. One can entangle ions if they
share a motional mode (Sec. . This mode should corre-
spond to the sidebands addressed by the laser pulses. In a ring
trap, the relevant degrees of freedom have a nonlinear energy
spectrum, which complicates mode selection. Yet the authors
addressed separated groups of spectral lines individually, by ex-
citing the ions to a high-angular-momentum state. Hence the
authors controlled the motional modes coherently, as is neces-
sary for implementing gates.



Reference [84] features a ring trap of radius r &~ 3 pm.
Furthermore, beams with micron-scale diameters have
been applied to trapped ions [79]. We therefore call for
a beam diameter of a few microns, e.g., &~ 4 pm. This
beam diameter, with the ring-trap radius, points to an
angle 6 = /2 subtended by the laser beam (Fig. .

Knowing 6, we can estimate the number of times the
ions rotate during the gate. The rotation period is ~ 10
us [84]. To undergo a gate of & 50 us, the ions complete
~ 5 rotations (each ion passes through both illuminated
arcs ~ 5 times). One might worry that the ions cannot
undergo one coherent gate by passing into and out of the
illuminated arcs so many times.

FIG. 4: Bird’s-eye view of ring trap and laser implementing
a partially quantum-autonomous Mglmer—Sgrensen gate.
The beam diameter extends over a distance | = 2rsin(6/2).
Two ions simultaneously enter arcs illuminated by the laser
beam.

Yet each ion rotates quickly enough to effectively ex-
perience one coherent pulse throughout the protocol.
Consider, again, a 43Ca™ ion with qubit states ||) =
45751170 and 1) = 487 ;3P 70), following [79)].
Suppose that the ion begins in |]) and that the desired
pulse populates the higher-energy [1). Passing through
an illuminated arc, the ion experiences a short pulse.
This pulse slightly increases the |1) population. Suppose
the transition |[1)—|{) decays much more slowly than the
ion rotates around the ring. The short pulses jointly re-
semble one long pulse, increasingly populating |1). Now,
we support the above supposition. The ions in [84] ro-
tate at 100 kHz, whereas the [1)—|]) transition decays at
arate 0.167 Hz [79]. Since 0.167 Hz <« 100 kHz, the time
scales meet the required condition.

IV. SUPERCONDUCTING QUBITS

This section introduces quantum-autonomous gates for
transmon qubits in circuit QED. Section [IV_A]| and
describe quantum-autonomous Z gates. In the pro-
tocol of Sec. [V_A] a transmon-and-cavity system re-
flects an incoming photon. The photon is resonant with
the transmon’s ground-to-first-excited-state transition.
Therefore, the photon alters the relative phase between
the transmon’s two lowest energy levels. In the proto-
col of Sec. an incoming photon enters a cavity
coupled to a transmon dispersively. Incrementing the

cavity’s population, the photon effectively changes the
qubit’s gap (via the dispersive coupling) and so changes
the transmon’s relative phase. Section [[V_C| describes a
quantum-autonomous XY (entangling) gate.

IV A. 7 gate effected via reflected photon in
circuit QED

In Sec. we review a nonautonomous protocol
implemented by Besse et al. [85]. During the protocol,
a transmon—cavity system reflects an incoming photon.
The protocol effects a controlled-Z gate on the photon
and transmon. On page 2 of [85], Besse et al. cast the
gate as controlled on the transmon and targeting the pho-
ton. Yet one can interpret the gate as controlled on the
photon and targeting the transmon. Privileging the lat-
ter interpretation, suppose the photon is in |1) (rather
than in a nontrivial superposition of |0) and |1)). The
gate enacts a Z on the transmon. We show how to im-

plement this gate autonomously in Sec.

IV A 1. Nonautonomous gate effected via reflected photon

in circuit QED

Here, we review the controlled gate reported on in [85].
The protocol features a transmon coupled to a single-
mode cavity (Fig. . The transmon has a ground state
lg) = 10), first excited state |e) = |1), and second excited
state |f). Let w denote the |g)—|e) energy gap. The trans-
mon has an anharmonicity «; a gap w + « separates the
le) and [|f) energies. The cavity’s electromagnetic mode,
too, has a frequency w + a. We denote the Fock states
by |n), wherein n =0,1,...

o+ a

ANNANAND
No phase = 1m Tw+a
N ) —_—
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19)

FIG. 5: Controlled-(—Z) gate implemented in circuit QED.
An incoming photon interacts with a transmon-—cavity
system, which reflects the photon. The photon acquires a
phase dependent on the transmon’s initial state;
equivalently, the transmon acquires a phase dependent on
the photon’s initial state. Figure simplified from [85].

The gate protocol proceeds as follows. One shoots a
photon of frequency w+a at the transmon—cavity system.
The subsequent events depend on the transmon’s state.

First, suppose the transmon begins in |g). Due to its
energy spectrum, the transmon cannot interact with the
photon. The cavity interacts instead: it reflects the pho-
ton, imparting a relative phase of 7. If the photon began
in al0) + b|1) (wherein a,b € C), it ends in a|0) — b|1).



Now, suppose the transmon begins in |e). The pho-
ton is resonant with the transmon’s |e)—|f) transition.
This transition, however, couples to the cavity mode via
a Jaynes—Cummings interaction. The coupling strength
exceeds the cavity linewidth. Hence the incoming pho-
ton has the wrong frequency to interact with the trans-
mon—cavity system. The system reflects the photon with-
out imparting any phase to it.

Let us summarize the gate’s action. Suppose the pho-
ton begins in a|0) + b|1). We have seen that

|g)(a]0) + b[1)) = |g)(al0) = Db[1)) and (1)
le)(al0) + bI1)) = |e)(al0) + b[1)). (2)

Suppose the transmon begins in «lg) + Ble), wherein
a, 8 € C. The protocol acts as

(alg) + Ble))(al0) +b[1)) 3)
= a(alg) + Ble))[0) + b(—alg) + Ble))[1).  (4)

The photon has controlled a —Z gate on the transmon.
Now, suppose the photon begins in |1), as throughout
the following subsubsection. The protocol transforms the
transmon state as a|g)+5le) — —alg)+5le) = —Z(alg)+
Ble)). The global phase —1 lacks physical significance, so
the protocol enacts a Z gate.

IV A 2. Quantum-autonomous Z gate effected via reflected

photon in circuit QED

Here, we show how to quantum-autonomously imple-
ment the Z gate described in the previous subsubsection.
We describe the setup, then detail the protocol. The pri-
mary challenge is to stop the gate from acting repeatedly;
our solution relies on a A system.

The protocol features the following setup. A transmon
A couples to a cavity via the Jaynes—Cummings inter-
action described in Sec. [V A 1] The cavity’s electro-
magnetic mode is resonant with an autonomous quan-
tum clock’s ticks. The clock couples to the cavity via
a waveguide. The clock consists not of a PMLL, as in
Sec. but of several qubits and a multilevel qu-
dit [IIl [86]. The qubits form a clockwork mechanism
that contacts hot and cold baths. From the temperature
gradient, the clockwork extracts thermodynamic work.
This work drives the qudit to its topmost energy level.
The qudit then emits a photon, interpretable as a tick,
while dropping to its ground state. The clock can achieve
a high accuracy and precision if the clockwork is suffi-
ciently complex [11].

The gate proceeds as follows. The autonomous quan-
tum clock emits a photon. The photon interacts with the
transmon—cavity system, which reflects it, as described in
Sec. The interaction implements a Z gate on the
transmon.

Having described the protocol, we address a challenge
to it: by definition, a clock ticks more than once [I0]
TT]. Whenever the gate-controlling clock ticks, the gate

happens again. Our solution centers on a metastable
state. Appendix [C]sketches an alternative, in which the
clock applies a fraction of the gate many times.

The clock can have a metastable state if it contains a
three-level A system [87], as has been engineered from a
transmon [88, B9]. Figure [6] depicts the A system. |g)
denotes the ground state; and |e), an excited state. |s)
denotes a metastable intermediate-energy level. wg, de-
notes the |g)—|e) energy gap; and wge, the |e)—|s) gap.

&) o~

wse

|s)

19)

FIG. 6: A system in an autonomous quantum clock. A
clockwork mechanism (Fig. [7) pumps the system into |e).
The system spontaneously emits frequency-wse photons,
which serve as clock ticks.

The A system replaces the multilevel qudit in an au-
tonomous quantum clock (Sec. and [I1}, [86]). The
A system begins in |g). Absorbing an excitation from
the clockwork (detailed in the next paragraph), the A
system transitions to |e). It then decays into |s), emit-
ting a frequency-wse photon. This tick initiates a Z gate.
Suppose the |s) lifetime far exceeds the gate-operation
time. The A system likely does not decay from |[s) to |e),
and tick again, until after the gate ends. This separation
of time scales is feasible: in [85], the optimal gate inter-
action lasted for ~ 250 ns. This duration is far shorter
than the lifetime exhibited by a transmon A system’s
metastable state, ~ 4 us [8g].

An autonomous quantum heat engine can drive the
A system’s |g)—|e) transition, via a three-body interac-
tion [I0, [11]. Figure [7] depicts this clock. A cold qubit
C has a Hamiltonian He = %wcagc) characterized by a
gap we. This qubit, contacting a temperature-T¢ bath,
begins in the thermal state pc = e~ /e /Tr(e~He/Te),
The hot qubit H has analogous properties Hyy, wy, P,
and T3, > T¢. Denote by |jkl) the state in which the A
system is in |j); C, in |k); and H, in |I). Under the reso-
nance condition we + wge = wy, the qubits undergo the
three-wave-mixing process |01g) <> |10e). The heat baths
favor the rightward direction, exciting the A system and
C. C can couple strongly to its bath, which dissipates
the excitation quickly [I7]. This dissipation renders the
clock’s evolution irreversible. One can introduce more
CH pairs, and make the A system more elaborate, to
improve the clock’s accuracy and precision [11].
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FIG. 7: Autonomous quantum clock featuring a A system
driven by an autonomous quantum engine. The resonance
condition we¢ + wge = wy enables a three-body energy
exchange. The thermal baths favor the |01g) — |10e)
transition, driving excitations into the A system (Fig. @

IV B. Quantum-autonomous Z gate implemented
via dispersive coupling in circuit QED

We have introduced a quantum-autonomous Z gate
implemented via a reflected photon; now, we introduce a
quantum-autonomous Z gate implemented via a disper-
sive coupling. The qubit is a transmon interacting dis-
persively with a cavity. An autonomous quantum clock
emits a photon that enters the cavity via a waveguide. As
the cavity’s photon number shifts, so does the transmon’s
effective frequency, due to the dispersive coupling. Hence
the transmon’s state acquires a relative phase. Below, we
detail the protocol and argue for its feasibility.

Our protocol resembles the Duan—Kimble gate [90].
There, a photon interacts with a transmon—cavity sys-
tem to perform a logic operation on the transmon. This
scheme has been experimentally implemented in cavity
QED [91] and circuit QED [85], 92].

In our proposal, the transmon couples to the cavity
dispersively with a strength x. Let a denote the cavity
mode’s lowering operator; and o, the transmon’s Pauli-
z operator. The transmon—cavity Hamiltonian contains
an interaction term %aTa o,. Since the interaction is dis-
persive, the transmon’s |0) and |1) populations remain
constant. In contrast, the cavity population decays at a
rate .

We model the incoming photon as a Gaussian pulse of
bandwidth Q. The bandwidth is narrow, compared to
the cavity’s decay rate, which is lower than the trans-
mon—cavity’s coupling strength: < v < x. In this
regime, the transmon state (expressed relative to the
computational basis) acquires the relative phase [85]

¢ = 2arctan (2x/7) . (5)

Upon beginning in a|0) 4+ b|1) (wherein a,b € C), the
transmon ends in a|0) + €% b|1).

Appendices [D] and [E] report on numerical simulations
of the gate. The transmon suffers from very little dephas-
ing in the narrow-bandwidth, strong-coupling regime: in
the simulation, the qubit’s Bloch vector rotates through
an angle 7/2 with a fidelity of 0.9989. A coherence mea-
sure, defined in App. [E] simultaneously achieves a value
of 0.4997 (the maximum possible value is 0.5000).
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Furthermore, the gate lasts for a reasonable time. Ap-
pendix [E] shows numerically that the system reaches a
steady state by a time = 200/v. Typical cavity lifetimes
1/~ are on the order of 10 ns [93]. Hence the gate oper-
ates for a time ~ 2 us. In contrast, transmon qubits can
have dephasing times T on the order of 100 us [93]. The
gate can therefore end well before the qubit decoheres.

IV C. Quantum-autonomous XY gate in circuit
QED

This section shows how to implement a quantum-
autonomous XY gate on transmons. First, we review the
XY gate’s definition and transmons’ interactions. Then,
we describe the setup and protocol. We argue for the
protocol’s feasibility next. Finally, we describe two chal-
lenges and resolutions to them.

We define the XY gate as

Uy (0) 1= ei8 (-Gt 0

0 denotes the rotation angle in the subspace
span{|01),|10)}. Uxy(#) fully or partially transfers
an excitation between two qubits (a transmon’s native
Hamiltonian being « o¢,). XY interactions are native
to solid-state-qubit platforms [94]. One can couple
transmons using microwave drive tones, by parametri-
cally modulating a coupler element (e.g., a flux-tunable
superconducting quantum interference device), or by
dynamically bringing the transmons into resonance using
a flux pulse. Our protocol couples transmons by tuning
one into resonance with another quantum-autonomously.

Figure [§] depicts the setup. A transmon A has a tun-
able bare frequency wa. A couples capacitively, with a
strength gac, to a cavity C. The cavity supports an elec-
tromagnetic mode of frequency weo. We aim to couple A
to a transmon B, which has a fixed frequency wp.

The gate proceeds as follows. As in Sec. [[V_A] an
autonomous quantum clock ticks. The tick photon enters
the cavity. Via the cavity—transmon coupling, the photon
effectively shifts transmon A’s frequency. If A’s effective
frequency matches B’s frequency, the transmons interact.

f\ r\
C A B
FIG. 8: Quantum-autonomous implementation of XY gate
in circuit QED. An autonomous quantum clock emits a
photon into a cavity C' coupled dispersively to transmon A.
Via that coupling, the photon effectively changes A’s

frequency. If A becomes resonant with B, the transmons
interact.

The tick photon changes A’s frequency as follows. Let
Asc = wqa — we denote the difference between A’s and



the cavity’s frequencies. A couples to the cavity disper-
sively. Denote the cavity’s annihilation operator by a.
The C'AB Hamiltonian follows from second-order per-
turbation theory [93]:

1
Heap =weala + iwAagA) + Xac aTaogA) (7)

+ %wB agB) + 9gaB (US_A)G(_B) + h.c.) .

Due to the third term, the cavity’s occupation number
influences A’s effective frequency. Define Aap = wp —
w4 as the difference between the transmons’ frequencies.
Suppose that yac = Aap and that the cavity begins
empty. The first time the clock ticks, the cavity acquires
one photon, which tunes A into resonance with B.

Now, we argue that xyac can equal Ap in practice.
This condition implies that the transmons’ bare frequen-
cies are close together: dispersive-shift constants x a4c are
usually much smaller than bare qubit frequencies wy,g;
and xac must translate waq onto wp. This closeness
presents a challenge: Eq. describes the interactions
relevant in the presence of cavity photons. However, the
cavity begins empty, and A begins off-resonant with B.
Under these circumstances, A couples to B via a ZZ
interaction. To quantify this interaction, we denote by
gap the strength of the XY coupling between A and B.
When the cavity lacks photons, the qubits interact via a
Hamiltonian term %UgA)O’gB) [95]. The XY coupling
must dominate over this ZZ coupling: gag > ¢4 5/AaB,
or Aap > gap. For Aap to be = yac, as desired, xac
must be > g4p. This condition is achievable: in a scheme
proposed in [96], two transmons achieve a capacitive-
coupling gap of 5 MHz. A dispersive shift yac of a few
hundred MHz is achievable, satisfying xac > gap [97].
This outcome can result from custom coupling schemes
such as the quarton coupler [97].

Having described our gate and its feasibility, we an-
alyze the primary challenges to it: cavity loss and de-
phasing. After the clock populates the cavity, the pop-
ulation decays. The decay’s extent depends on the
gate-operation time, which dictates also the rotation
angle in Eq. @ The time-evolution unitary follows

from the Hamiltonian Hxy = gap (O’SFA)USB) + h.c.) =

A B
!JA?B Za:x,y Ul(l )01(1 )1
UAB(t) = e_igAB(U;A)®U§B>+G?SA)®U§B)))§/2 ) (8)

Let y¢ denote the cavity’s decay rate. The photon re-
mains inside the cavity for a time =~ 1/v¢. For the gate
to impart a considerable rotation angle, g4p/vc must be
at least &~ 1. A v¢ comparable to gap = 5 MHz (achiev-
able according to the previous paragraph) is experimen-
tally reasonable [03, [08]. One could optimize this gate’s
fidelity using simulations similar to those in App. [E]
Like cavity loss, dephasing challenges our proposal.
Dephasing can happen for two reasons. First, the cavity
may not fully absorb the photon. This issue does not
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arise if the photon’s bandwidth, 2, is much smaller than
the cavity linewidth, vo. The parameter regime of, e.g.,
Sec. [[V_B] meets this condition. Second, thermal pho-
tons in the coupled waveguide can enter the cavity and
drive random gates that dephase AB’s state. Denote by
nyn the waveguide’s average thermal-photon numberE
Thermal photons impinge on the cavity at a rate y¢o ngp.
A typical waveguide has a mode of frequency ~ 6 GHz
and a temperature of 35 mK to 40 mK [98]. Under these
conditions, n¢, < 1073, Such a low thermal population
can mitigate the transmon dephasing caused by stray
photons.

V. OUTLOOK

We have proposed implementations of (partially and
fully) autonomous quantum gates for three experimen-
tal platforms: Rydberg atoms, trapped ions, and super-
conducting qubits. These gates could constitute build-
ing blocks for (partially or fully) autonomous quantum
circuits. Greater autonomy could improve quantum de-
vices’ scalability, coherence times, and energy costs.

Our results suggest several next steps. First, one
could implement our gate proposals experimentally. Af-
ter proof-of-principle experiments, one could incorporate
our gates into quantum computers, helping free them
from classical control. This incorporation could bene-
fit quantum computation, e.g., as discussed at the end
of Sec. quantum-autonomous PMLLs may stabi-
lize ultrafast gates. Replacing Rydberg-blockade gates
with ultrafast gates may reduce gate-operation times.
Even our nonuniversal gate sets could enable quantum-
autonomous Brownian circuits [99H103], perhaps with
U(1) symmetry [104].

Second, one could expand a platform’s quantum-
autonomous gates into a universal gate set. One could
also identify mechanisms for chaining the gates together
quantum-autonomously. These expansions would enable
universal quantum-autonomous circuits.

Third, one could identify quantum-autonomous imple-
mentations of not only circuits, but quantum computa-
tions. Similar goals have been gaining traction at the
intersection of atomic, molecular, and optical (AMO)
physics with quantum error correction [27H3I]. Quan-
tum thermodynamics can complement those fields’ toolk-
its with AQM expertise [ [2]. Dissipative environments,
studied across AMO physics and quantum thermody-
namics, can assist [27, 29-H3T) 105]. Quantum thermo-
dynamics has already inspired a quantum-autonomous
initialization of a superconducting qubit [I7]. We envi-
sion, for each of several platforms, quantum-autonomous

4 Let T denote the waveguide’s temperature, and let Boltzmann’s

constant equal 1. The average thermal-photon number is ny, =
1/(ewc/T —1).



implementations of qubit initialization and reinitializa-
tion, circuits, and error correction. When building a
quantum computer, one could combine these quantum-
autonomous components with classically controlled ones
to optimize costs.
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Appendix A QUANTUM-AUTONOMOUS LEVINE-PICHLER GATE

This appendix sketches a third quantum-autonomous controlled-phase gate for Rydberg atoms. This gate comple-
ments the two in Sec. First, we outline the protocol proposed by Levine and Pichler [37]. It relies on global,
rather than single-site, laser pulses. This relatively lax control seems promising for quantum autonomy. We argue
that PMLLs can provide the required pulses and time the gate. Phase-locking the PMLLs stably poses a challenge,
however.

The Levine—Pichler gate leverages global laser pulses, instead of addressing atoms individually [37]. The protocol
involves the computational-basis states |[0) = |55 /2, F=1,mp=0) and 1) = |55/, F=2,mp=0), as well as the
Rydberg state |r) = [70.5; /2, mj= — 1/2). The protocol proceeds as follows:

1. A bichromatic global laser pulse is resonant with the |1)—|r) transition. The atoms’ dynamics depend on the
initial state:

o If the atoms begin in |00), the pulse is off-resonant with all possible atomic transitions. The state remains
constant.

e If the atoms begin in |01), the pulse drives the |01) <> |Or) transition with a detuning A and Rabi frequency
Q.

o If the atoms begin in |10), the pulse drives the |10) <+ |r0) transition with a detuning A and Rabi frequency
0.

e If the atoms begin in |11), the pulse drives the transition between |11) and the symmetric entangled state
%(|1r> + |r1)). The laser has a detuning A, and the atoms oscillate with a Rabi frequency v/2 Q.

The pulse duration 7 ensures that, if the atoms begin in |11), they undergo a complete Rabi cycle (return to
|11)). If the atoms begin in |01) or |10), they undergo only a partial oscillation.

2. A second bichromatic pulse follows. It has the same duration as the first but has a phase offset: Q — Qe®. If
the atoms began in |01) or |10), this pulse completes their Rabi oscillation. If the atoms began in |11), they
undergo another full Rabi oscillation.

The protocol maps each computational state to itself, while introducing a phase dependent on the detuning, A. The
choice A = 0.377Q2 implements a controlled-Z gate.

PMLLs can quantum-autonomously emit pulses with the wavelengths and durations necessary to drive the Rydberg
transition. One drives the |1)—|r) transition via a two-photon process, which requires two lasers. They need wavelengths
of 420 nm and 1013 nm/|"°| One can tune PMLLs to emit at these wavelengths as described in Sec. to achieve

15 The wavelengths differ from those mentioned in Sec. be-

” . X atom jumps from |1) to |r) via a sublevel of [6P;/5). In the
cause the two protocols’ intermediate states differ. Here, an

earlier protocol, an atom jumps via a different state |i).
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420 nm, one can frequency-double a PMLL that emits at the commoner wavelength 840 nm. The second required
wavelength, 1013 nm, is common among PMLLs. Furthermore, the required pulse lasts for 7 = ——22— = 195 ns.

VAZT12Q?

A PMLL can effect a pulse of this duration [49].

PMLLs can achieve not only the necessary wavelengths and durations, but also global pulses. A global pulse
illuminates both atoms. Often, ~ 5 pum separate Rydberg atoms [34]. Usual laser-beam waists are wider [45].

Having argued that PMLLs can achieve three required specifications, we argue that a PMLL can time the
Levine—Pichler gate. We argued in Sec. that PMLLs can serve as autonomous quantum clocks. Hence an
auxiliary laser could time and control the Levine—Pichler gate, as in Sec. To effect both pulses in the sequence,
one would use two pairs of PMLLs, one pair per atom. Within each pair, the lasers must remain frequency-locked to
each other with high stability, maintaining a constant phase shift between the two. If using PMLLs, one can control
the pulse timing by controlling the length of the lasers’ resonators. Yet small length changes and drifts can introduce
large errors into the pulses’ lengths [T06]. Hence PMLLs would render this gate challenging.

Appendix B TIME-DEPENDENT CLASSICAL CONTROL IN RYDBERG-ATOM AND
SUPERCONDUCTING-QUBIT PROPOSALS

Section [[IT B] detailed a subtlety of our trapped-ion proposals: Paul traps exert time-dependent classical control on
the ions. The other platforms discussed (Rydberg atoms and superconducting qubits) require time-dependent classical
control, too. Yet these two platforms’ control does not manipulate quantum-information-bearing DOFSs, enacting
gates. Hence our Rydberg-atom and superconducting-qubit gates qualify as quantum-autonomous, according to the
definition in [2]. We support this claim for the two platforms consecutively.

Classical time-dependent control holds Rydberg atoms in place. If the atoms are neutral, that control manifests
as optical tweezers, highly focused laser beams [I07]. In our proposals, optical tweezers only keep atoms fixed. The
tweezers do not move atoms around to drive the gates, unlike in recent experiments on programmable neutral-atom
simulators [38].

Classical control keeps superconducting devices at low temperatures. Superconducting devices operate inside dilu-
tion refrigerators whose workings include actively controlled elements. However, these elements do not manipulate
information stored in the superconducting devices. Photons, emitted by an autonomous quantum clock, do. Similarly,
a recent experiment demonstrated the quantum-autonomous initialization of a superconducting qubit in a dilution
refrigerator [17].

Appendix C SECOND APPROACH TO HALTING QUANTUM-AUTONOMOUS CONTROLLED-Z
GATE IN CIRCUIT QED

Section shows how to implement a controlled-Z gate on flying (photonic) qubits in cavity QED, using an
autonomous quantum clock. A conventional clock ticks repeatedly. In contrast, a simple gate implementation requires
exactly one tick. Section presents one solution to this dilemma. We now sketch a more challenging approach.

In this approach, one engineers each clock tick to implement a fraction of the desired gate. Equation @ shows the
desired gate; and Eq. , the gate implemented in a time ¢. Comparing the equations shows that, in a time ¢, the
Bloch vector rotates through an angle § = 2g4pt. Let 6y denote the desired angle. One may engineer the coupling
gap such that 6 = 6g/n. The state will rotate through the desired angle after n clock ticks.

One can limit the number of clock ticks by powering the clock with a finite energy source. An autonomous quantum
clock’s energy source consists of cold and hot baths (Fig. . Once the clock depletes its energy source (once the baths
come to the same temperature), the clock stops ticking.

This strategy endangers the gate’s fidelity. In previous autonomous-quantum-clock analyses, researchers have
assumed that the baths are infinitely large and Markovian [10, 1 [T08]. The finite-size baths we envision are non-
Markovian. This property may alter the clock’s reliability and so the gate’s fidelity [109]. Furthermore, n may vary
across trials, as the clock’s ticking is stochastic. Hence more infrastructure—perhaps a more complex clockwork [IT]—
would be necessary to implement the gate reliably.

Appendix D EQUATIONS OF MOTION FOR QUANTUM-AUTONOMOUS Z GATE ON TRANSMON

Section [[V_B] introduced a quantum-autonomous protocol for implementing a Z gate on a transmon. Here, we
derive the effective equations of motion used to calculate the gate’s fidelity. By “effective,” we mean that the
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equations reproduce the cavity-qubit dynamics described by the full master equation. First, we review the setup and
protocol described in Sec. [V B| Then, we introduce the mathematical formalism and derive the effective dynamics,
using quantum input-output theory [110].

Consider the following setup. A qubit corresponds to the Pauli-z operator o,; and a cavity mode, to the raising
operator al. A dispersive Hamiltonian %aTa 0, couples the qubit to the cavity. The cavity couples also to an open
waveguide, at a rate ~.

The Z-gate protocol proceeds as follows. At time ¢ = 0, an autonomous quantum clock emits a single-photon
Gaussian pulse of bandwidth Q. The pulse propagates through the waveguide to the cavity. The photon has a

temporal profile
QQ 1/4 Q2
u(t) = (%) exp {—4(t - to)Q} . (D1)

The photon’s frequency is detuned from the cavity mode by an amount A. The photon reflects off the cavity, giving
the transmon’s state (expressed in terms of the computational basis) a relative phase. The photon thereafter travels
to the opposite end of the waveguide.

TTO derive the effective equations of motion, we introduce notation for the input and output waveguide modes. Let

a/, (t) denote the input mode’s raising operator, labeled by the time ¢. Let |vac) denote the photonic DOF’s vacuum

state. The input photon is in the state
+oo
|0y) = / dt u(t) af (t) [vac). (D2)

Having introduced the input-mode notation, we introduce the output-mode notation. Let alut (t) denote the output

mode’s raising operator. This field propagates oppositely the input field associated with aiTn(t).

Now, we formalize the modes’, cavity’s, and qubit’s interdependence. Consider preparing the qubit in |1) or |}).
The cavity’s state comes to depend on the qubit’s state, via the dispersive coupling. The qubit-dependent cavity
amplitudes a4 (t) satisfy the equations of motion

z% ar(t) = {A + %(x — w)] ar(t) —iv/7yu(t) and (D3)
i%@(t) = [A - ;(X—i—i’y)] ay(t) — iy ult). D)

These amplitudes inform the output amplitudes ugy 1/, (), which we can compute from the input-output relation

uout,T/i(t) = U(t) + ﬁ aT/i(ﬂ‘ (D5)
All these ingredients determine the photonic state

+00 t
W, (1)) = /t dt’ u(t') af, (') |vac) + @y, (t) al|vac) + / At tgne 1/, (1) @by () vac). (D6)

—00

Moreover, the ingredients above determine the qubit-cavity-waveguide system’s state. Suppose the qubit begins in
cos0|1) + €*?sin6]). The input photon begins in |¥;,) [Eq. (D2)]. Hence the qubit-cavity-waveguide system begins
in

|Wiot (t=0)) = (cos b[1) + e sinb|l)) © [Wiy). (D7)
The Hamiltonian commutes with the qubit’s o,. Therefore, the qubit—cavity—waveguide system’s state evolves as
[Wioq(t)) = cos O|1)[T4(¢)) + € sin |4) Wy (1)). (D8)

We can now compute the time-dependent qubit coherence function, defined as follows. Denote the qubit’s time-t
density operator by po(t). Consider the matrix that represents pg(t) relative to the computational basis, {|1), [{)}-
The top off-diagonal element, (T|pg(t)|)), quantifies the state’s coherence. To calculate this matrix element, we trace
out the photon (P) from the whole-system state |¥yot(t)) [Eq. (D8))]:

(M) = Trp (N Weor ()X Peor () 1)) = €' cos Osin 6 (¥ (1) 4(t)) (D9)
= (TpQ(—o0)[){W ()W (t)). (D10)
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The final factor—the photonic-state overlap—follows from Eq. :

(WL ()W4(2)) = /t+<>o dt’ |u(t')]* + as(t / At uout+ (1) gy, (1) (D11)
Into this equation, we substitute the input-output relation (D5)):
@)= [ a P 0@+ [ a ) A a el @ + e
= /_:o dt’ [u(t")]? + ar(t)aj(t) + /_too dt' {7 [ar(t") u*(t') + ut') al(t')] +~ar(t) aj(t)}
= tra@al+ [ (7 [ ) ) al )] ) ). (D12)
To simplify the integral, we use the cavity-mode equations of motion, Egs. and (D4)). They imply
a: (1) % a1 (t) = {—m - % - ;] at(t)ay(t) — vAu(t)al(t) and (D13)
o) g ai(0) = fia - % - Lai e - v ay). (D14)
Summing these two equations yiclds
% [a](t) ar(t)] = (—ix — )@ (t) ar(t) — /7 [u(t)aj(t) +u(t) ar ()] (D15)
= % [a} () ar(t)] +~aj(t) ar(t) + 7 [ult)aj(t) +u(t) ar(t)] = —ixal(t) ar(t) . (D16)

Integrating both sides of Eq. (D16)), we recover the integral in Eq. (D12):

/ dt’ {dj [a}(t)ay(t)] +yal(t') ar(t') + 7 [u)a] ') +ut') aT(t’)]} = —ix /_Oo dt'aj(t')ay(t')  (D17)

S t

= ar(t) aj(t) +/_ dt' {\/7 [ar(t") u (') + u()a; ()] +ya (t) aj (') } . (D18)
Substituting into Eq. , we obtain the simplified qubit coherence function:

<T|PQ(t)H/> — (U U — 11— ' dt' @ () ar(t' D19

Aol = o) = 1-ix [ ara(¢)ane), D19)

The change in the qubit coherence function, (o_(t)) — (c_(0)), equals the following quantity. Suppose the input
field began in a coherent state whose average photon number equaled 1. Consider the change, from time 0 to time ¢, in
the coherence function’s logarithm. This hypothetical change equals the true change, (o_(t)) — (c_(0)). This equality
is no coincidence: using third quantization [ITI], one can show the following about a dispersively coupled qubit-
cavity-waveguide system. The change in the coherence function, given a single-photon input, equals the change in the
coherence function’s logarithm, given a coherent-state input. This equality stems from the following mathematical
property: the coherence, given a single-photon input, is the generating function for the coherence given a coherent
(photonic) state. This correspondence characterizes general qubit—boson systems governed by dispersive Hamiltonians,
which can be solved analyticallym

Let us summarize the derivations above. We can compute the qubit coherence dynamics via the equations of motion

il (1)) = x(o_(—00)) as(t) ai(t)
igar(t) = [A+ 5 —im)] ar(t) — iy ult) (D20)
iday(t) = [A—L0c+im)]ay(t) — iy ult)

16 More generally, the correspondence characterizes every

. A . ! qubit’s energy and (ii) is quadratic in the bosonic raising and
qubit-boson system Hamiltonian that (i) conserves the

lowering operators.
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Let us identify the parameter regime that supports a high-fidelity qubit gate. We wish to minimize the distortions in
the outgoing photon: they can result from entanglement between the qubit and the output photon. Such entanglement
diminishes the qubit’s coherence. Hence we focus on the regime in which the waveguide interacts with the cavity over
a time much shorter than the pulse duration. In this narrow-bandwidth regime, Q0 < . The input pulse scatters
off the cavity before the interaction affects the photon-pulse shape. Therefore, we can adiabatically approximate the
cavity amplitudes:

_ i/

aT(t) ArX—Y u(t)

Ocar ()] <vlary ()] = T2 (D21)
a(t) ~ %u(t).

1

Let us substitute these approximate qubit-dependent cavity amplitudes into the qubit coherence function (D19)):

<T|PQ(t)H> . /t Pk g\ = () XY /t ’ N2
— =1 —x dt’ aj(t)ar(t') =1— — — dt |u(t)]”. D22
e A e ) > 1= ey (A sy o ) (D22)
At long times (¢ > Q71), the qubit coherence function approximates to
- (Mlee(N) ixy
lim ——————— ~1— . — D23
t=o (tlpg(—o0)J) (A+257) (A -257) .

The detuning value A = § maximizes the left-hand side’s magnitude, minimizing the qubit dephasing. Under this
condition, the coherence function satisfies the approximation

2 1 2
im _Hlpa®l4) ~1- XZ. =2 Z,X = exp (—2i arctan X) . (D24)
t=o0 (Tpg(—o0)l}) Xx—9 3tix gl
By the left-hand side’s definition, the qubit’s Bloch vector rotates about the z-axis through an angle
¢ = 2arctan(2y/7y). (D25)

We have recovered Eq. .

Appendix E FIDELITY OF SECOND QUANTUM-AUTONOMOUS Z GATE FOR TRANSMON

Section [[V_B] introduced a quantum-autonomous Z gate implemented on a transmon via a dispersive coupling.
Here, we calculate the gate’s fidelity. We numerically show that the qubit reaches a steady state in a time =~ 200/7,
as claimed at the end of Sec. [V B| Finally, we identify the optimal parameter regime.

We calculate the fidelity as follows. Consider initializing the transmon in the state |1} = a|0)+b|1), wherein a,b € C
and |a|?+]b]? = 1. Suppose we wish to rotate the Bloch vector about the z-axis through an angle ¢. Ideally, the state
evolves to [1hy) = al0) + be'?|1). The actual final state, p, may suffer from imperfections. Define as p;i == (j|p|k) the
(J, k) element of the matrix that represents p relative to the computational basis, wherein j, k € {0,1}. We aim to
compute the fidelity between p and [¢4)(1)4|. Since the latter state is pure, the fidelity reduces to [112]

F (p, s )ts]) = (Wslpltos) = lal*(0lpool0) + a*be'{0]po1 [1) + ab®e™"* (1] p10|0) + [b1* (1] pra|1). (E1)

The penultimate term depends on p1g = (0_). Since the qubit couples to the cavity dispersively, the gate preserves
the initial state’s populations: pgo = |a|?, and p11 = |b|>. Equation (EI]) simplifies to

F (p,[o)ws]) = lal* + [b]* + 2Re (ab*e™"(0-)). (E2)

Having calculated the fidelity, we numerically illustrate the phase and coherence achievable throughout the gate
protocol. We solve Egs. for the coherence function (o_) = |[(c_)|e’*. The coherence magnitude |{(o_)| and
phase ¢ depend on the time ¢ for which the gate has operated. Figure [9] depicts these time dependences. |(o_)| and
¢ stabilize over a time scale ~ 200/~.

We identified the optimal parameter regime as follows. First, we fixed the cavity lifetime 7, the unit of inverse
time. < must far exceed the photon bandwidth, v > Q, so we set 0 = 0.03y. Fixing the photon-cavity detuning
at A = x/2, we swept x over [0,307]. Figure |10|shows the maximum attainable fidelity as a function of the target
angle, . We define this maximum fidelity as the greatest overlap F(p, |¥)t3|) between the evolved qubit state p
and the target state |1g), optimized over all accessible parameter sets. At small angles ¢ 2 0, the fidelity maximizes
when y =~ 0. At large angles ¢ ~ 7, the fidelity maximizes when v < x. For example, the protocol can realize a
7/2-rotation with a fidelity of 0.9989 and a coherence of 0.4997 (right-hand plot of Fig. [9).
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FIG. 9: Time-dependent effects of a photon on a superconducting qubit coupled dispersively to a cavity. The left-hand plot
shows the angle through which the qubit’s Bloch vector has rotated about the z-axis by the time ¢t. The right-hand plot
quantifies the state’s coherence. Each z-axis shows time measured in units of 1/, the cavity’s inverse lifetime. We formed
each curve using the parameters that enable the best-fidelity approximation to a rotation through the corresponding angle ¢.
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FIG. 10: Fidelity achievable with the main text’s second quantum-autonomous superconducting-qubit Z gate. In the
narrow-bandwidth, strong-coupling regime Q < v < x (blue disks), the fidelity is near-perfect. If € is tuned out of this
regime (orange triangles), the fidelity worsens as the rotation-angle magnitude |¢| grows.
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